![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > r19.2zb | Structured version Visualization version GIF version |
Description: A response to the notion that the condition 𝐴 ≠ ∅ can be removed in r19.2z 4205. Interestingly enough, 𝜑 does not figure in the left-hand side. (Contributed by Jeff Hankins, 24-Aug-2009.) |
Ref | Expression |
---|---|
r19.2zb | ⊢ (𝐴 ≠ ∅ ↔ (∀𝑥 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐴 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | r19.2z 4205 | . . 3 ⊢ ((𝐴 ≠ ∅ ∧ ∀𝑥 ∈ 𝐴 𝜑) → ∃𝑥 ∈ 𝐴 𝜑) | |
2 | 1 | ex 449 | . 2 ⊢ (𝐴 ≠ ∅ → (∀𝑥 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐴 𝜑)) |
3 | noel 4063 | . . . . . . 7 ⊢ ¬ 𝑥 ∈ ∅ | |
4 | 3 | pm2.21i 116 | . . . . . 6 ⊢ (𝑥 ∈ ∅ → 𝜑) |
5 | 4 | rgen 3061 | . . . . 5 ⊢ ∀𝑥 ∈ ∅ 𝜑 |
6 | raleq 3278 | . . . . 5 ⊢ (𝐴 = ∅ → (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ ∅ 𝜑)) | |
7 | 5, 6 | mpbiri 248 | . . . 4 ⊢ (𝐴 = ∅ → ∀𝑥 ∈ 𝐴 𝜑) |
8 | 7 | necon3bi 2959 | . . 3 ⊢ (¬ ∀𝑥 ∈ 𝐴 𝜑 → 𝐴 ≠ ∅) |
9 | exsimpl 1944 | . . . 4 ⊢ (∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) → ∃𝑥 𝑥 ∈ 𝐴) | |
10 | df-rex 3057 | . . . 4 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
11 | n0 4075 | . . . 4 ⊢ (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥 ∈ 𝐴) | |
12 | 9, 10, 11 | 3imtr4i 281 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 𝜑 → 𝐴 ≠ ∅) |
13 | 8, 12 | ja 173 | . 2 ⊢ ((∀𝑥 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐴 𝜑) → 𝐴 ≠ ∅) |
14 | 2, 13 | impbii 199 | 1 ⊢ (𝐴 ≠ ∅ ↔ (∀𝑥 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐴 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 = wceq 1632 ∃wex 1853 ∈ wcel 2140 ≠ wne 2933 ∀wral 3051 ∃wrex 3052 ∅c0 4059 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1989 ax-6 2055 ax-7 2091 ax-9 2149 ax-10 2169 ax-11 2184 ax-12 2197 ax-13 2392 ax-ext 2741 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2048 df-clab 2748 df-cleq 2754 df-clel 2757 df-nfc 2892 df-ne 2934 df-ral 3056 df-rex 3057 df-v 3343 df-dif 3719 df-nul 4060 |
This theorem is referenced by: iinpreima 6510 utopbas 22261 clsk3nimkb 38859 radcnvrat 39034 |
Copyright terms: Public domain | W3C validator |