![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > r19.2z | Structured version Visualization version GIF version |
Description: Theorem 19.2 of [Margaris] p. 89 with restricted quantifiers (compare 19.2 1949). The restricted version is valid only when the domain of quantification is not empty. (Contributed by NM, 15-Nov-2003.) |
Ref | Expression |
---|---|
r19.2z | ⊢ ((𝐴 ≠ ∅ ∧ ∀𝑥 ∈ 𝐴 𝜑) → ∃𝑥 ∈ 𝐴 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ral 2946 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜑)) | |
2 | exintr 1859 | . . . 4 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → 𝜑) → (∃𝑥 𝑥 ∈ 𝐴 → ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑))) | |
3 | 1, 2 | sylbi 207 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝜑 → (∃𝑥 𝑥 ∈ 𝐴 → ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑))) |
4 | n0 3964 | . . 3 ⊢ (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥 ∈ 𝐴) | |
5 | df-rex 2947 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
6 | 3, 4, 5 | 3imtr4g 285 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝜑 → (𝐴 ≠ ∅ → ∃𝑥 ∈ 𝐴 𝜑)) |
7 | 6 | impcom 445 | 1 ⊢ ((𝐴 ≠ ∅ ∧ ∀𝑥 ∈ 𝐴 𝜑) → ∃𝑥 ∈ 𝐴 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∀wal 1521 ∃wex 1744 ∈ wcel 2030 ≠ wne 2823 ∀wral 2941 ∃wrex 2942 ∅c0 3948 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-ral 2946 df-rex 2947 df-v 3233 df-dif 3610 df-nul 3949 |
This theorem is referenced by: r19.2zb 4094 intssuni 4531 riinn0 4627 trintssOLD 4803 iinexg 4854 reusv2lem2 4899 reusv2lem2OLD 4900 reusv2lem3 4901 xpiindi 5290 cnviin 5710 eusvobj2 6683 iiner 7862 finsschain 8314 cfeq0 9116 cfsuc 9117 iundom2g 9400 alephval2 9432 prlem934 9893 supaddc 11028 supadd 11029 supmul1 11030 supmullem2 11032 supmul 11033 rexfiuz 14131 r19.2uz 14135 climuni 14327 caurcvg 14451 caurcvg2 14452 caucvg 14453 pc2dvds 15630 vdwmc2 15730 vdwlem6 15737 vdwnnlem3 15748 issubg4 17660 gexcl3 18048 lbsextlem2 19207 iincld 20891 opnnei 20972 cncnp2 21133 lmmo 21232 iunconn 21279 ptbasfi 21432 filuni 21736 isfcls 21860 fclsopn 21865 ustfilxp 22063 nrginvrcn 22543 lebnumlem3 22809 cfil3i 23113 caun0 23125 iscmet3 23137 nulmbl2 23350 dyadmax 23412 itg2seq 23554 itg2monolem1 23562 rolle 23798 c1lip1 23805 taylfval 24158 ulm0 24190 frgrreg 27381 iinssiun 29503 bnj906 31126 cvmliftlem15 31406 dfon2lem6 31817 filnetlem4 32501 itg2addnclem 33591 itg2addnc 33594 itg2gt0cn 33595 bddiblnc 33610 ftc1anc 33623 filbcmb 33665 incsequz 33674 isbnd2 33712 isbnd3 33713 ssbnd 33717 unichnidl 33960 iunconnlem2 39485 upbdrech 39833 infxrpnf 39987 |
Copyright terms: Public domain | W3C validator |