![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > r19.29af | Structured version Visualization version GIF version |
Description: A commonly used pattern based on r19.29 3210. (Contributed by Thierry Arnoux, 29-Nov-2017.) |
Ref | Expression |
---|---|
r19.29af.0 | ⊢ Ⅎ𝑥𝜑 |
r19.29af.1 | ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝜓) → 𝜒) |
r19.29af.2 | ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 𝜓) |
Ref | Expression |
---|---|
r19.29af | ⊢ (𝜑 → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | r19.29af.0 | . 2 ⊢ Ⅎ𝑥𝜑 | |
2 | nfv 1992 | . 2 ⊢ Ⅎ𝑥𝜒 | |
3 | r19.29af.1 | . 2 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝜓) → 𝜒) | |
4 | r19.29af.2 | . 2 ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 𝜓) | |
5 | 1, 2, 3, 4 | r19.29af2 3213 | 1 ⊢ (𝜑 → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 Ⅎwnf 1857 ∈ wcel 2139 ∃wrex 3051 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-12 2196 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-ex 1854 df-nf 1859 df-ral 3055 df-rex 3056 |
This theorem is referenced by: r19.29an 3215 r19.29a 3216 elsnxpOLD 5839 fsnex 6701 neiptopnei 21138 neitr 21186 utopsnneiplem 22252 isucn2 22284 foresf1o 29650 fsumiunle 29884 2sqmo 29958 reff 30215 locfinreflem 30216 ordtconnlem1 30279 esumrnmpt2 30439 esumgect 30461 esum2dlem 30463 esum2d 30464 esumiun 30465 sigapildsys 30534 oms0 30668 eulerpartlemgvv 30747 breprexplema 31017 stoweidlem27 40747 stoweidlem35 40755 |
Copyright terms: Public domain | W3C validator |