![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > r19.29 | Structured version Visualization version GIF version |
Description: Restricted quantifier version of 19.29 1841. See also r19.29r 3102. (Contributed by NM, 31-Aug-1999.) (Proof shortened by Andrew Salmon, 30-May-2011.) |
Ref | Expression |
---|---|
r19.29 | ⊢ ((∀𝑥 ∈ 𝐴 𝜑 ∧ ∃𝑥 ∈ 𝐴 𝜓) → ∃𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm3.2 462 | . . . 4 ⊢ (𝜑 → (𝜓 → (𝜑 ∧ 𝜓))) | |
2 | 1 | ralimi 2981 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝜑 → ∀𝑥 ∈ 𝐴 (𝜓 → (𝜑 ∧ 𝜓))) |
3 | rexim 3037 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 (𝜓 → (𝜑 ∧ 𝜓)) → (∃𝑥 ∈ 𝐴 𝜓 → ∃𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓))) | |
4 | 2, 3 | syl 17 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → ∃𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓))) |
5 | 4 | imp 444 | 1 ⊢ ((∀𝑥 ∈ 𝐴 𝜑 ∧ ∃𝑥 ∈ 𝐴 𝜓) → ∃𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∀wral 2941 ∃wrex 2942 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 |
This theorem depends on definitions: df-bi 197 df-an 385 df-ex 1745 df-ral 2946 df-rex 2947 |
This theorem is referenced by: r19.29r 3102 2r19.29 3108 r19.29d2r 3109 disjiun 4672 triun 4799 ralxfrd 4909 ralxfrdOLD 4910 ralxfrd2 4914 elrnmptg 5407 fmpt 6421 fliftfun 6602 fun11iun 7168 omabs 7772 findcard3 8244 r1sdom 8675 tcrank 8785 infxpenlem 8874 dfac12k 9007 cfslb2n 9128 cfcoflem 9132 iundom2g 9400 supsrlem 9970 axpre-sup 10028 fimaxre3 11008 limsupbnd2 14258 rlimuni 14325 rlimcld2 14353 rlimno1 14428 pgpfac1lem5 18524 ppttop 20859 epttop 20861 tgcnp 21105 lmcnp 21156 bwth 21261 1stcrest 21304 txlm 21499 tx1stc 21501 fbfinnfr 21692 fbunfip 21720 filuni 21736 ufileu 21770 fbflim2 21828 flftg 21847 ufilcmp 21883 cnpfcf 21892 tsmsxp 22005 metss 22360 lmmbr 23102 ivthlem2 23267 ivthlem3 23268 dyadmax 23412 rhmdvdsr 29946 tpr2rico 30086 esumpcvgval 30268 sigaclcuni 30309 voliune 30420 volfiniune 30421 dya2icoseg2 30468 poimirlem29 33568 unirep 33637 heibor1lem 33738 pmapglbx 35373 stoweidlem35 40570 |
Copyright terms: Public domain | W3C validator |