MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r19.28z Structured version   Visualization version   GIF version

Theorem r19.28z 4205
Description: Restricted quantifier version of Theorem 19.28 of [Margaris] p. 90. It is valid only when the domain of quantification is not empty. (Contributed by NM, 26-Oct-2010.)
Hypothesis
Ref Expression
r19.3rz.1 𝑥𝜑
Assertion
Ref Expression
r19.28z (𝐴 ≠ ∅ → (∀𝑥𝐴 (𝜑𝜓) ↔ (𝜑 ∧ ∀𝑥𝐴 𝜓)))
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥)

Proof of Theorem r19.28z
StepHypRef Expression
1 r19.3rz.1 . . . 4 𝑥𝜑
21r19.3rz 4204 . . 3 (𝐴 ≠ ∅ → (𝜑 ↔ ∀𝑥𝐴 𝜑))
32anbi1d 615 . 2 (𝐴 ≠ ∅ → ((𝜑 ∧ ∀𝑥𝐴 𝜓) ↔ (∀𝑥𝐴 𝜑 ∧ ∀𝑥𝐴 𝜓)))
4 r19.26 3212 . 2 (∀𝑥𝐴 (𝜑𝜓) ↔ (∀𝑥𝐴 𝜑 ∧ ∀𝑥𝐴 𝜓))
53, 4syl6rbbr 279 1 (𝐴 ≠ ∅ → (∀𝑥𝐴 (𝜑𝜓) ↔ (𝜑 ∧ ∀𝑥𝐴 𝜓)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382  wnf 1856  wne 2943  wral 3061  c0 4063
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-ral 3066  df-v 3353  df-dif 3726  df-nul 4064
This theorem is referenced by:  r19.28zv  4208  raaan  4222  raaan2  41692
  Copyright terms: Public domain W3C validator