MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r19.28v Structured version   Visualization version   GIF version

Theorem r19.28v 3209
Description: Restricted quantifier version of one direction of 19.28 2243. (The other direction holds when 𝐴 is nonempty, see r19.28zv 4210.) (Contributed by NM, 2-Apr-2004.)
Assertion
Ref Expression
r19.28v ((𝜑 ∧ ∀𝑥𝐴 𝜓) → ∀𝑥𝐴 (𝜑𝜓))
Distinct variable group:   𝜑,𝑥
Allowed substitution hints:   𝜓(𝑥)   𝐴(𝑥)

Proof of Theorem r19.28v
StepHypRef Expression
1 r19.27v 3208 . 2 ((∀𝑥𝐴 𝜓𝜑) → ∀𝑥𝐴 (𝜓𝜑))
2 ancom 465 . 2 ((𝜑 ∧ ∀𝑥𝐴 𝜓) ↔ (∀𝑥𝐴 𝜓𝜑))
3 ancom 465 . . 3 ((𝜑𝜓) ↔ (𝜓𝜑))
43ralbii 3118 . 2 (∀𝑥𝐴 (𝜑𝜓) ↔ ∀𝑥𝐴 (𝜓𝜑))
51, 2, 43imtr4i 281 1 ((𝜑 ∧ ∀𝑥𝐴 𝜓) → ∀𝑥𝐴 (𝜑𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  wral 3050
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988
This theorem depends on definitions:  df-bi 197  df-an 385  df-ral 3055
This theorem is referenced by:  rr19.28v  3486  fununi  6125  txlm  21653
  Copyright terms: Public domain W3C validator