MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r19.27z Structured version   Visualization version   GIF version

Theorem r19.27z 4214
Description: Restricted quantifier version of Theorem 19.27 of [Margaris] p. 90. It is valid only when the domain of quantification is not empty. (Contributed by NM, 26-Oct-2010.)
Hypothesis
Ref Expression
r19.27z.1 𝑥𝜓
Assertion
Ref Expression
r19.27z (𝐴 ≠ ∅ → (∀𝑥𝐴 (𝜑𝜓) ↔ (∀𝑥𝐴 𝜑𝜓)))
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥)

Proof of Theorem r19.27z
StepHypRef Expression
1 r19.27z.1 . . . 4 𝑥𝜓
21r19.3rz 4206 . . 3 (𝐴 ≠ ∅ → (𝜓 ↔ ∀𝑥𝐴 𝜓))
32anbi2d 742 . 2 (𝐴 ≠ ∅ → ((∀𝑥𝐴 𝜑𝜓) ↔ (∀𝑥𝐴 𝜑 ∧ ∀𝑥𝐴 𝜓)))
4 r19.26 3202 . 2 (∀𝑥𝐴 (𝜑𝜓) ↔ (∀𝑥𝐴 𝜑 ∧ ∀𝑥𝐴 𝜓))
53, 4syl6rbbr 279 1 (𝐴 ≠ ∅ → (∀𝑥𝐴 (𝜑𝜓) ↔ (∀𝑥𝐴 𝜑𝜓)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  wnf 1857  wne 2932  wral 3050  c0 4058
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-ral 3055  df-v 3342  df-dif 3718  df-nul 4059
This theorem is referenced by:  r19.27zv  4215  raaan  4226  raaan2  41681
  Copyright terms: Public domain W3C validator