![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > r19.26 | Structured version Visualization version GIF version |
Description: Restricted quantifier version of 19.26 1838. (Contributed by NM, 28-Jan-1997.) (Proof shortened by Andrew Salmon, 30-May-2011.) |
Ref | Expression |
---|---|
r19.26 | ⊢ (∀𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ (∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐴 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 472 | . . . 4 ⊢ ((𝜑 ∧ 𝜓) → 𝜑) | |
2 | 1 | ralimi 2981 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) → ∀𝑥 ∈ 𝐴 𝜑) |
3 | simpr 476 | . . . 4 ⊢ ((𝜑 ∧ 𝜓) → 𝜓) | |
4 | 3 | ralimi 2981 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) → ∀𝑥 ∈ 𝐴 𝜓) |
5 | 2, 4 | jca 553 | . 2 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) → (∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐴 𝜓)) |
6 | pm3.2 462 | . . . 4 ⊢ (𝜑 → (𝜓 → (𝜑 ∧ 𝜓))) | |
7 | 6 | ral2imi 2976 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝜑 → (∀𝑥 ∈ 𝐴 𝜓 → ∀𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓))) |
8 | 7 | imp 444 | . 2 ⊢ ((∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐴 𝜓) → ∀𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓)) |
9 | 5, 8 | impbii 199 | 1 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ (∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐴 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 ∧ wa 383 ∀wral 2941 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 |
This theorem depends on definitions: df-bi 197 df-an 385 df-ral 2946 |
This theorem is referenced by: r19.26-2 3094 r19.26-3 3095 ralbiim 3098 r19.27v 3099 r19.35 3113 reu8 3435 ssrab 3713 r19.28z 4096 r19.27z 4103 ralnralall 4113 ssdifsn 4351 2ralunsn 4455 iuneq2 4569 disjxun 4683 asymref2 5548 cnvpo 5711 fncnv 6000 fnres 6045 mptfnf 6053 fnopabg 6055 mpteqb 6338 eqfnfv3 6353 fvn0ssdmfun 6390 caoftrn 6974 wfr3g 7458 iiner 7862 ixpeq2 7964 ixpin 7975 ixpfi2 8305 wemaplem2 8493 dfac5 8989 kmlem6 9015 eltsk2g 9611 intgru 9674 axgroth6 9688 fsequb 12814 rexanuz 14129 rexanre 14130 cau3lem 14138 rlimcn2 14365 o1of2 14387 o1rlimmul 14393 climbdd 14446 sqrt2irr 15023 gcdcllem1 15268 pc11 15631 prmreclem2 15668 catpropd 16416 issubc3 16556 fucinv 16680 ispos2 16995 issubg3 17659 issubg4 17660 pmtrdifwrdel2 17952 ringsrg 18635 cply1mul 19712 iunocv 20073 scmatf1 20385 cpmatsubgpmat 20573 tgval2 20808 1stcelcls 21312 ptclsg 21466 ptcnplem 21472 fbun 21691 txflf 21857 ucncn 22136 prdsmet 22222 metequiv 22361 metequiv2 22362 ncvsi 22997 iscau4 23123 cmetcaulem 23132 evthicc2 23275 ismbfcn 23443 mbfi1flimlem 23534 rolle 23798 itgsubst 23857 plydivex 24097 ulmcaulem 24193 ulmcau 24194 ulmbdd 24197 ulmcn 24198 mumullem2 24951 2sqlem6 25193 tgcgr4 25471 axpasch 25866 axeuclid 25888 axcontlem2 25890 axcontlem4 25892 axcontlem7 25895 vtxd0nedgb 26440 fusgrregdegfi 26521 rusgr1vtxlem 26539 uspgr2wlkeq 26598 wlkdlem4 26638 lfgriswlk 26641 frgrreg 27381 frgrregord013 27382 friendshipgt3 27385 ocsh 28270 spanuni 28531 riesz4i 29050 leopadd 29119 leoptri 29123 leoptr 29124 disjunsn 29533 voliune 30420 volfiniune 30421 eulerpartlemr 30564 eulerpartlemn 30571 dfpo2 31771 poseq 31878 wzel 31894 frr3g 31904 ssltun2 32041 neibastop1 32479 phpreu 33523 ptrecube 33539 poimirlem23 33562 poimirlem27 33566 ovoliunnfl 33581 voliunnfl 33583 volsupnfl 33584 itg2addnc 33594 inixp 33653 rngoueqz 33869 intidl 33958 pclclN 35495 tendoeq2 36379 mzpincl 37614 lerabdioph 37686 ltrabdioph 37689 nerabdioph 37690 dvdsrabdioph 37691 dford3lem1 37910 gneispace 38749 ssrabf 39612 climxrre 40300 stoweidlem7 40542 stoweidlem54 40589 dirkercncflem3 40640 2ralbiim 41495 2reu4a 41510 ply1mulgsumlem1 42499 ldepsnlinclem1 42619 ldepsnlinclem2 42620 |
Copyright terms: Public domain | W3C validator |