![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > r19.21v | Structured version Visualization version GIF version |
Description: Restricted quantifier version of 19.21v 2005. (Contributed by NM, 15-Oct-2003.) (Proof shortened by Andrew Salmon, 30-May-2011.) Reduce dependencies on axioms. (Revised by Wolf Lammen, 2-Jan-2020.) |
Ref | Expression |
---|---|
r19.21v | ⊢ (∀𝑥 ∈ 𝐴 (𝜑 → 𝜓) ↔ (𝜑 → ∀𝑥 ∈ 𝐴 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bi2.04 375 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 → (𝜑 → 𝜓)) ↔ (𝜑 → (𝑥 ∈ 𝐴 → 𝜓))) | |
2 | 1 | albii 1884 | . . 3 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → (𝜑 → 𝜓)) ↔ ∀𝑥(𝜑 → (𝑥 ∈ 𝐴 → 𝜓))) |
3 | 19.21v 2005 | . . 3 ⊢ (∀𝑥(𝜑 → (𝑥 ∈ 𝐴 → 𝜓)) ↔ (𝜑 → ∀𝑥(𝑥 ∈ 𝐴 → 𝜓))) | |
4 | 2, 3 | bitri 264 | . 2 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → (𝜑 → 𝜓)) ↔ (𝜑 → ∀𝑥(𝑥 ∈ 𝐴 → 𝜓))) |
5 | df-ral 3043 | . 2 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 → 𝜓) ↔ ∀𝑥(𝑥 ∈ 𝐴 → (𝜑 → 𝜓))) | |
6 | df-ral 3043 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜓)) | |
7 | 6 | imbi2i 325 | . 2 ⊢ ((𝜑 → ∀𝑥 ∈ 𝐴 𝜓) ↔ (𝜑 → ∀𝑥(𝑥 ∈ 𝐴 → 𝜓))) |
8 | 4, 5, 7 | 3bitr4i 292 | 1 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 → 𝜓) ↔ (𝜑 → ∀𝑥 ∈ 𝐴 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∀wal 1618 ∈ wcel 2127 ∀wral 3038 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1859 ax-4 1874 ax-5 1976 |
This theorem depends on definitions: df-bi 197 df-ex 1842 df-ral 3043 |
This theorem is referenced by: r19.23v 3149 r19.32v 3209 rmo4 3528 2reu5lem3 3544 ra4v 3653 rmo3 3657 dftr5 4895 reusv3 5013 tfinds2 7216 tfinds3 7217 wfr3g 7570 tfrlem1 7629 tfr3 7652 oeordi 7824 ordiso2 8573 ordtypelem7 8582 cantnf 8751 dfac12lem3 9130 ttukeylem5 9498 ttukeylem6 9499 fpwwe2lem8 9622 grudomon 9802 raluz2 11901 bpolycl 14953 ndvdssub 15306 gcdcllem1 15394 acsfn2 16496 pgpfac1 18650 pgpfac 18654 isdomn2 19472 islindf4 20350 isclo2 21065 1stccn 21439 kgencn 21532 txflf 21982 fclsopn 21990 nn0min 29847 bnj580 31261 bnj852 31269 rdgprc 31976 conway 32187 filnetlem4 32653 poimirlem29 33720 heicant 33726 ntrneixb 38864 2rexrsb 41646 tfis2d 42906 |
Copyright terms: Public domain | W3C validator |