MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  quotval Structured version   Visualization version   GIF version

Theorem quotval 24092
Description: Value of the quotient function. (Contributed by Mario Carneiro, 23-Jul-2014.)
Hypothesis
Ref Expression
quotval.1 𝑅 = (𝐹𝑓 − (𝐺𝑓 · 𝑞))
Assertion
Ref Expression
quotval ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → (𝐹 quot 𝐺) = (𝑞 ∈ (Poly‘ℂ)(𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺))))
Distinct variable groups:   𝐹,𝑞   𝐺,𝑞
Allowed substitution hints:   𝑅(𝑞)   𝑆(𝑞)

Proof of Theorem quotval
Dummy variables 𝑓 𝑔 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 plyssc 24001 . . 3 (Poly‘𝑆) ⊆ (Poly‘ℂ)
21sseli 3632 . 2 (𝐹 ∈ (Poly‘𝑆) → 𝐹 ∈ (Poly‘ℂ))
31sseli 3632 . . 3 (𝐺 ∈ (Poly‘𝑆) → 𝐺 ∈ (Poly‘ℂ))
4 eldifsn 4350 . . . . 5 (𝐺 ∈ ((Poly‘ℂ) ∖ {0𝑝}) ↔ (𝐺 ∈ (Poly‘ℂ) ∧ 𝐺 ≠ 0𝑝))
5 oveq1 6697 . . . . . . . . . . 11 (𝑔 = 𝐺 → (𝑔𝑓 · 𝑞) = (𝐺𝑓 · 𝑞))
6 oveq12 6699 . . . . . . . . . . 11 ((𝑓 = 𝐹 ∧ (𝑔𝑓 · 𝑞) = (𝐺𝑓 · 𝑞)) → (𝑓𝑓 − (𝑔𝑓 · 𝑞)) = (𝐹𝑓 − (𝐺𝑓 · 𝑞)))
75, 6sylan2 490 . . . . . . . . . 10 ((𝑓 = 𝐹𝑔 = 𝐺) → (𝑓𝑓 − (𝑔𝑓 · 𝑞)) = (𝐹𝑓 − (𝐺𝑓 · 𝑞)))
8 quotval.1 . . . . . . . . . 10 𝑅 = (𝐹𝑓 − (𝐺𝑓 · 𝑞))
97, 8syl6eqr 2703 . . . . . . . . 9 ((𝑓 = 𝐹𝑔 = 𝐺) → (𝑓𝑓 − (𝑔𝑓 · 𝑞)) = 𝑅)
109sbceq1d 3473 . . . . . . . 8 ((𝑓 = 𝐹𝑔 = 𝐺) → ([(𝑓𝑓 − (𝑔𝑓 · 𝑞)) / 𝑟](𝑟 = 0𝑝 ∨ (deg‘𝑟) < (deg‘𝑔)) ↔ [𝑅 / 𝑟](𝑟 = 0𝑝 ∨ (deg‘𝑟) < (deg‘𝑔))))
11 ovex 6718 . . . . . . . . . . 11 (𝐹𝑓 − (𝐺𝑓 · 𝑞)) ∈ V
128, 11eqeltri 2726 . . . . . . . . . 10 𝑅 ∈ V
13 eqeq1 2655 . . . . . . . . . . 11 (𝑟 = 𝑅 → (𝑟 = 0𝑝𝑅 = 0𝑝))
14 fveq2 6229 . . . . . . . . . . . 12 (𝑟 = 𝑅 → (deg‘𝑟) = (deg‘𝑅))
1514breq1d 4695 . . . . . . . . . . 11 (𝑟 = 𝑅 → ((deg‘𝑟) < (deg‘𝑔) ↔ (deg‘𝑅) < (deg‘𝑔)))
1613, 15orbi12d 746 . . . . . . . . . 10 (𝑟 = 𝑅 → ((𝑟 = 0𝑝 ∨ (deg‘𝑟) < (deg‘𝑔)) ↔ (𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝑔))))
1712, 16sbcie 3503 . . . . . . . . 9 ([𝑅 / 𝑟](𝑟 = 0𝑝 ∨ (deg‘𝑟) < (deg‘𝑔)) ↔ (𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝑔)))
18 simpr 476 . . . . . . . . . . . 12 ((𝑓 = 𝐹𝑔 = 𝐺) → 𝑔 = 𝐺)
1918fveq2d 6233 . . . . . . . . . . 11 ((𝑓 = 𝐹𝑔 = 𝐺) → (deg‘𝑔) = (deg‘𝐺))
2019breq2d 4697 . . . . . . . . . 10 ((𝑓 = 𝐹𝑔 = 𝐺) → ((deg‘𝑅) < (deg‘𝑔) ↔ (deg‘𝑅) < (deg‘𝐺)))
2120orbi2d 738 . . . . . . . . 9 ((𝑓 = 𝐹𝑔 = 𝐺) → ((𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝑔)) ↔ (𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺))))
2217, 21syl5bb 272 . . . . . . . 8 ((𝑓 = 𝐹𝑔 = 𝐺) → ([𝑅 / 𝑟](𝑟 = 0𝑝 ∨ (deg‘𝑟) < (deg‘𝑔)) ↔ (𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺))))
2310, 22bitrd 268 . . . . . . 7 ((𝑓 = 𝐹𝑔 = 𝐺) → ([(𝑓𝑓 − (𝑔𝑓 · 𝑞)) / 𝑟](𝑟 = 0𝑝 ∨ (deg‘𝑟) < (deg‘𝑔)) ↔ (𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺))))
2423riotabidv 6653 . . . . . 6 ((𝑓 = 𝐹𝑔 = 𝐺) → (𝑞 ∈ (Poly‘ℂ)[(𝑓𝑓 − (𝑔𝑓 · 𝑞)) / 𝑟](𝑟 = 0𝑝 ∨ (deg‘𝑟) < (deg‘𝑔))) = (𝑞 ∈ (Poly‘ℂ)(𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺))))
25 df-quot 24091 . . . . . 6 quot = (𝑓 ∈ (Poly‘ℂ), 𝑔 ∈ ((Poly‘ℂ) ∖ {0𝑝}) ↦ (𝑞 ∈ (Poly‘ℂ)[(𝑓𝑓 − (𝑔𝑓 · 𝑞)) / 𝑟](𝑟 = 0𝑝 ∨ (deg‘𝑟) < (deg‘𝑔))))
26 riotaex 6655 . . . . . 6 (𝑞 ∈ (Poly‘ℂ)(𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺))) ∈ V
2724, 25, 26ovmpt2a 6833 . . . . 5 ((𝐹 ∈ (Poly‘ℂ) ∧ 𝐺 ∈ ((Poly‘ℂ) ∖ {0𝑝})) → (𝐹 quot 𝐺) = (𝑞 ∈ (Poly‘ℂ)(𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺))))
284, 27sylan2br 492 . . . 4 ((𝐹 ∈ (Poly‘ℂ) ∧ (𝐺 ∈ (Poly‘ℂ) ∧ 𝐺 ≠ 0𝑝)) → (𝐹 quot 𝐺) = (𝑞 ∈ (Poly‘ℂ)(𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺))))
29283impb 1279 . . 3 ((𝐹 ∈ (Poly‘ℂ) ∧ 𝐺 ∈ (Poly‘ℂ) ∧ 𝐺 ≠ 0𝑝) → (𝐹 quot 𝐺) = (𝑞 ∈ (Poly‘ℂ)(𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺))))
303, 29syl3an2 1400 . 2 ((𝐹 ∈ (Poly‘ℂ) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → (𝐹 quot 𝐺) = (𝑞 ∈ (Poly‘ℂ)(𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺))))
312, 30syl3an1 1399 1 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → (𝐹 quot 𝐺) = (𝑞 ∈ (Poly‘ℂ)(𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 382  wa 383  w3a 1054   = wceq 1523  wcel 2030  wne 2823  Vcvv 3231  [wsbc 3468  cdif 3604  {csn 4210   class class class wbr 4685  cfv 5926  crio 6650  (class class class)co 6690  𝑓 cof 6937  cc 9972   · cmul 9979   < clt 10112  cmin 10304  0𝑝c0p 23481  Polycply 23985  degcdgr 23988   quot cquot 24090
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-i2m1 10042  ax-1ne0 10043  ax-rrecex 10046  ax-cnre 10047
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-map 7901  df-nn 11059  df-n0 11331  df-ply 23989  df-quot 24091
This theorem is referenced by:  quotlem  24100
  Copyright terms: Public domain W3C validator