![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > quoremnn0 | Structured version Visualization version GIF version |
Description: Quotient and remainder of a nonnegative integer divided by a positive integer. (Contributed by NM, 14-Aug-2008.) |
Ref | Expression |
---|---|
quorem.1 | ⊢ 𝑄 = (⌊‘(𝐴 / 𝐵)) |
quorem.2 | ⊢ 𝑅 = (𝐴 − (𝐵 · 𝑄)) |
Ref | Expression |
---|---|
quoremnn0 | ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ) → ((𝑄 ∈ ℕ0 ∧ 𝑅 ∈ ℕ0) ∧ (𝑅 < 𝐵 ∧ 𝐴 = ((𝐵 · 𝑄) + 𝑅)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | quorem.1 | . . 3 ⊢ 𝑄 = (⌊‘(𝐴 / 𝐵)) | |
2 | fldivnn0 12838 | . . 3 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ) → (⌊‘(𝐴 / 𝐵)) ∈ ℕ0) | |
3 | 1, 2 | syl5eqel 2844 | . 2 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ) → 𝑄 ∈ ℕ0) |
4 | nn0z 11613 | . . 3 ⊢ (𝐴 ∈ ℕ0 → 𝐴 ∈ ℤ) | |
5 | quorem.2 | . . . 4 ⊢ 𝑅 = (𝐴 − (𝐵 · 𝑄)) | |
6 | 1, 5 | quoremz 12869 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → ((𝑄 ∈ ℤ ∧ 𝑅 ∈ ℕ0) ∧ (𝑅 < 𝐵 ∧ 𝐴 = ((𝐵 · 𝑄) + 𝑅)))) |
7 | 4, 6 | sylan 489 | . 2 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ) → ((𝑄 ∈ ℤ ∧ 𝑅 ∈ ℕ0) ∧ (𝑅 < 𝐵 ∧ 𝐴 = ((𝐵 · 𝑄) + 𝑅)))) |
8 | simpl 474 | . . . . . 6 ⊢ ((𝑄 ∈ ℕ0 ∧ 𝑄 ∈ ℤ) → 𝑄 ∈ ℕ0) | |
9 | 8 | anim1i 593 | . . . . 5 ⊢ (((𝑄 ∈ ℕ0 ∧ 𝑄 ∈ ℤ) ∧ 𝑅 ∈ ℕ0) → (𝑄 ∈ ℕ0 ∧ 𝑅 ∈ ℕ0)) |
10 | 9 | anasss 682 | . . . 4 ⊢ ((𝑄 ∈ ℕ0 ∧ (𝑄 ∈ ℤ ∧ 𝑅 ∈ ℕ0)) → (𝑄 ∈ ℕ0 ∧ 𝑅 ∈ ℕ0)) |
11 | 10 | anim1i 593 | . . 3 ⊢ (((𝑄 ∈ ℕ0 ∧ (𝑄 ∈ ℤ ∧ 𝑅 ∈ ℕ0)) ∧ (𝑅 < 𝐵 ∧ 𝐴 = ((𝐵 · 𝑄) + 𝑅))) → ((𝑄 ∈ ℕ0 ∧ 𝑅 ∈ ℕ0) ∧ (𝑅 < 𝐵 ∧ 𝐴 = ((𝐵 · 𝑄) + 𝑅)))) |
12 | 11 | anasss 682 | . 2 ⊢ ((𝑄 ∈ ℕ0 ∧ ((𝑄 ∈ ℤ ∧ 𝑅 ∈ ℕ0) ∧ (𝑅 < 𝐵 ∧ 𝐴 = ((𝐵 · 𝑄) + 𝑅)))) → ((𝑄 ∈ ℕ0 ∧ 𝑅 ∈ ℕ0) ∧ (𝑅 < 𝐵 ∧ 𝐴 = ((𝐵 · 𝑄) + 𝑅)))) |
13 | 3, 7, 12 | syl2anc 696 | 1 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ) → ((𝑄 ∈ ℕ0 ∧ 𝑅 ∈ ℕ0) ∧ (𝑅 < 𝐵 ∧ 𝐴 = ((𝐵 · 𝑄) + 𝑅)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1632 ∈ wcel 2140 class class class wbr 4805 ‘cfv 6050 (class class class)co 6815 + caddc 10152 · cmul 10154 < clt 10287 − cmin 10479 / cdiv 10897 ℕcn 11233 ℕ0cn0 11505 ℤcz 11590 ⌊cfl 12806 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1989 ax-6 2055 ax-7 2091 ax-8 2142 ax-9 2149 ax-10 2169 ax-11 2184 ax-12 2197 ax-13 2392 ax-ext 2741 ax-sep 4934 ax-nul 4942 ax-pow 4993 ax-pr 5056 ax-un 7116 ax-cnex 10205 ax-resscn 10206 ax-1cn 10207 ax-icn 10208 ax-addcl 10209 ax-addrcl 10210 ax-mulcl 10211 ax-mulrcl 10212 ax-mulcom 10213 ax-addass 10214 ax-mulass 10215 ax-distr 10216 ax-i2m1 10217 ax-1ne0 10218 ax-1rid 10219 ax-rnegex 10220 ax-rrecex 10221 ax-cnre 10222 ax-pre-lttri 10223 ax-pre-lttrn 10224 ax-pre-ltadd 10225 ax-pre-mulgt0 10226 ax-pre-sup 10227 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2048 df-eu 2612 df-mo 2613 df-clab 2748 df-cleq 2754 df-clel 2757 df-nfc 2892 df-ne 2934 df-nel 3037 df-ral 3056 df-rex 3057 df-reu 3058 df-rmo 3059 df-rab 3060 df-v 3343 df-sbc 3578 df-csb 3676 df-dif 3719 df-un 3721 df-in 3723 df-ss 3730 df-pss 3732 df-nul 4060 df-if 4232 df-pw 4305 df-sn 4323 df-pr 4325 df-tp 4327 df-op 4329 df-uni 4590 df-iun 4675 df-br 4806 df-opab 4866 df-mpt 4883 df-tr 4906 df-id 5175 df-eprel 5180 df-po 5188 df-so 5189 df-fr 5226 df-we 5228 df-xp 5273 df-rel 5274 df-cnv 5275 df-co 5276 df-dm 5277 df-rn 5278 df-res 5279 df-ima 5280 df-pred 5842 df-ord 5888 df-on 5889 df-lim 5890 df-suc 5891 df-iota 6013 df-fun 6052 df-fn 6053 df-f 6054 df-f1 6055 df-fo 6056 df-f1o 6057 df-fv 6058 df-riota 6776 df-ov 6818 df-oprab 6819 df-mpt2 6820 df-om 7233 df-wrecs 7578 df-recs 7639 df-rdg 7677 df-er 7914 df-en 8125 df-dom 8126 df-sdom 8127 df-sup 8516 df-inf 8517 df-pnf 10289 df-mnf 10290 df-xr 10291 df-ltxr 10292 df-le 10293 df-sub 10481 df-neg 10482 df-div 10898 df-nn 11234 df-n0 11506 df-z 11591 df-uz 11901 df-fl 12808 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |