![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > quad | Structured version Visualization version GIF version |
Description: The quadratic equation. (Contributed by Mario Carneiro, 23-Apr-2015.) |
Ref | Expression |
---|---|
quad.a | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
quad.z | ⊢ (𝜑 → 𝐴 ≠ 0) |
quad.b | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
quad.c | ⊢ (𝜑 → 𝐶 ∈ ℂ) |
quad.x | ⊢ (𝜑 → 𝑋 ∈ ℂ) |
quad.d | ⊢ (𝜑 → 𝐷 = ((𝐵↑2) − (4 · (𝐴 · 𝐶)))) |
Ref | Expression |
---|---|
quad | ⊢ (𝜑 → (((𝐴 · (𝑋↑2)) + ((𝐵 · 𝑋) + 𝐶)) = 0 ↔ (𝑋 = ((-𝐵 + (√‘𝐷)) / (2 · 𝐴)) ∨ 𝑋 = ((-𝐵 − (√‘𝐷)) / (2 · 𝐴))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | quad.a | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
2 | quad.z | . 2 ⊢ (𝜑 → 𝐴 ≠ 0) | |
3 | quad.b | . 2 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
4 | quad.c | . 2 ⊢ (𝜑 → 𝐶 ∈ ℂ) | |
5 | quad.x | . 2 ⊢ (𝜑 → 𝑋 ∈ ℂ) | |
6 | quad.d | . . . 4 ⊢ (𝜑 → 𝐷 = ((𝐵↑2) − (4 · (𝐴 · 𝐶)))) | |
7 | 3 | sqcld 13213 | . . . . 5 ⊢ (𝜑 → (𝐵↑2) ∈ ℂ) |
8 | 4cn 11300 | . . . . . 6 ⊢ 4 ∈ ℂ | |
9 | 1, 4 | mulcld 10262 | . . . . . 6 ⊢ (𝜑 → (𝐴 · 𝐶) ∈ ℂ) |
10 | mulcl 10222 | . . . . . 6 ⊢ ((4 ∈ ℂ ∧ (𝐴 · 𝐶) ∈ ℂ) → (4 · (𝐴 · 𝐶)) ∈ ℂ) | |
11 | 8, 9, 10 | sylancr 575 | . . . . 5 ⊢ (𝜑 → (4 · (𝐴 · 𝐶)) ∈ ℂ) |
12 | 7, 11 | subcld 10594 | . . . 4 ⊢ (𝜑 → ((𝐵↑2) − (4 · (𝐴 · 𝐶))) ∈ ℂ) |
13 | 6, 12 | eqeltrd 2850 | . . 3 ⊢ (𝜑 → 𝐷 ∈ ℂ) |
14 | 13 | sqrtcld 14384 | . 2 ⊢ (𝜑 → (√‘𝐷) ∈ ℂ) |
15 | 13 | sqsqrtd 14386 | . . 3 ⊢ (𝜑 → ((√‘𝐷)↑2) = 𝐷) |
16 | 15, 6 | eqtrd 2805 | . 2 ⊢ (𝜑 → ((√‘𝐷)↑2) = ((𝐵↑2) − (4 · (𝐴 · 𝐶)))) |
17 | 1, 2, 3, 4, 5, 14, 16 | quad2 24787 | 1 ⊢ (𝜑 → (((𝐴 · (𝑋↑2)) + ((𝐵 · 𝑋) + 𝐶)) = 0 ↔ (𝑋 = ((-𝐵 + (√‘𝐷)) / (2 · 𝐴)) ∨ 𝑋 = ((-𝐵 − (√‘𝐷)) / (2 · 𝐴))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∨ wo 834 = wceq 1631 ∈ wcel 2145 ≠ wne 2943 ‘cfv 6031 (class class class)co 6793 ℂcc 10136 0cc0 10138 + caddc 10141 · cmul 10143 − cmin 10468 -cneg 10469 / cdiv 10886 2c2 11272 4c4 11274 ↑cexp 13067 √csqrt 14181 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-sep 4915 ax-nul 4923 ax-pow 4974 ax-pr 5034 ax-un 7096 ax-cnex 10194 ax-resscn 10195 ax-1cn 10196 ax-icn 10197 ax-addcl 10198 ax-addrcl 10199 ax-mulcl 10200 ax-mulrcl 10201 ax-mulcom 10202 ax-addass 10203 ax-mulass 10204 ax-distr 10205 ax-i2m1 10206 ax-1ne0 10207 ax-1rid 10208 ax-rnegex 10209 ax-rrecex 10210 ax-cnre 10211 ax-pre-lttri 10212 ax-pre-lttrn 10213 ax-pre-ltadd 10214 ax-pre-mulgt0 10215 ax-pre-sup 10216 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 835 df-3or 1072 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4226 df-pw 4299 df-sn 4317 df-pr 4319 df-tp 4321 df-op 4323 df-uni 4575 df-iun 4656 df-br 4787 df-opab 4847 df-mpt 4864 df-tr 4887 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-ord 5869 df-on 5870 df-lim 5871 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-riota 6754 df-ov 6796 df-oprab 6797 df-mpt2 6798 df-om 7213 df-2nd 7316 df-wrecs 7559 df-recs 7621 df-rdg 7659 df-er 7896 df-en 8110 df-dom 8111 df-sdom 8112 df-sup 8504 df-pnf 10278 df-mnf 10279 df-xr 10280 df-ltxr 10281 df-le 10282 df-sub 10470 df-neg 10471 df-div 10887 df-nn 11223 df-2 11281 df-3 11282 df-4 11283 df-n0 11495 df-z 11580 df-uz 11889 df-rp 12036 df-seq 13009 df-exp 13068 df-cj 14047 df-re 14048 df-im 14049 df-sqrt 14183 df-abs 14184 |
This theorem is referenced by: dcubic 24794 |
Copyright terms: Public domain | W3C validator |