![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > qsex | Structured version Visualization version GIF version |
Description: A quotient set exists. (Contributed by NM, 14-Aug-1995.) |
Ref | Expression |
---|---|
qsex.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
qsex | ⊢ (𝐴 / 𝑅) ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | qsex.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | qsexg 7956 | . 2 ⊢ (𝐴 ∈ V → (𝐴 / 𝑅) ∈ V) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 / 𝑅) ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2144 Vcvv 3349 / cqs 7894 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-8 2146 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 ax-rep 4902 ax-sep 4912 ax-nul 4920 ax-pr 5034 ax-un 7095 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3an 1072 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2049 df-eu 2621 df-mo 2622 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-ne 2943 df-ral 3065 df-rex 3066 df-reu 3067 df-rab 3069 df-v 3351 df-sbc 3586 df-csb 3681 df-dif 3724 df-un 3726 df-in 3728 df-ss 3735 df-nul 4062 df-if 4224 df-sn 4315 df-pr 4317 df-op 4321 df-uni 4573 df-iun 4654 df-br 4785 df-opab 4845 df-mpt 4862 df-id 5157 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-qs 7901 |
This theorem is referenced by: orbsta2 17953 |
Copyright terms: Public domain | W3C validator |