Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  qqhval2lem Structured version   Visualization version   GIF version

Theorem qqhval2lem 30334
Description: Lemma for qqhval2 30335. (Contributed by Thierry Arnoux, 29-Oct-2017.)
Hypotheses
Ref Expression
qqhval2.0 𝐵 = (Base‘𝑅)
qqhval2.1 / = (/r𝑅)
qqhval2.2 𝐿 = (ℤRHom‘𝑅)
Assertion
Ref Expression
qqhval2lem (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) → ((𝐿‘(numer‘(𝑋 / 𝑌))) / (𝐿‘(denom‘(𝑋 / 𝑌)))) = ((𝐿𝑋) / (𝐿𝑌)))

Proof of Theorem qqhval2lem
StepHypRef Expression
1 drngring 18956 . . . . 5 (𝑅 ∈ DivRing → 𝑅 ∈ Ring)
2 qqhval2.2 . . . . . 6 𝐿 = (ℤRHom‘𝑅)
32zrhrhm 20062 . . . . 5 (𝑅 ∈ Ring → 𝐿 ∈ (ℤring RingHom 𝑅))
41, 3syl 17 . . . 4 (𝑅 ∈ DivRing → 𝐿 ∈ (ℤring RingHom 𝑅))
54ad2antrr 764 . . 3 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) → 𝐿 ∈ (ℤring RingHom 𝑅))
6 simpr1 1234 . . . . . 6 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) → 𝑋 ∈ ℤ)
7 simpr2 1236 . . . . . 6 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) → 𝑌 ∈ ℤ)
86, 7gcdcld 15432 . . . . 5 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) → (𝑋 gcd 𝑌) ∈ ℕ0)
98nn0zd 11672 . . . 4 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) → (𝑋 gcd 𝑌) ∈ ℤ)
10 simpr3 1238 . . . . 5 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) → 𝑌 ≠ 0)
11 gcdeq0 15440 . . . . . . . . 9 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → ((𝑋 gcd 𝑌) = 0 ↔ (𝑋 = 0 ∧ 𝑌 = 0)))
1211simplbda 655 . . . . . . . 8 (((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ (𝑋 gcd 𝑌) = 0) → 𝑌 = 0)
1312ex 449 . . . . . . 7 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → ((𝑋 gcd 𝑌) = 0 → 𝑌 = 0))
1413necon3d 2953 . . . . . 6 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → (𝑌 ≠ 0 → (𝑋 gcd 𝑌) ≠ 0))
1514imp 444 . . . . 5 (((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ 𝑌 ≠ 0) → (𝑋 gcd 𝑌) ≠ 0)
166, 7, 10, 15syl21anc 1476 . . . 4 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) → (𝑋 gcd 𝑌) ≠ 0)
17 gcddvds 15427 . . . . . 6 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → ((𝑋 gcd 𝑌) ∥ 𝑋 ∧ (𝑋 gcd 𝑌) ∥ 𝑌))
186, 7, 17syl2anc 696 . . . . 5 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) → ((𝑋 gcd 𝑌) ∥ 𝑋 ∧ (𝑋 gcd 𝑌) ∥ 𝑌))
1918simpld 477 . . . 4 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) → (𝑋 gcd 𝑌) ∥ 𝑋)
20 dvdsval2 15185 . . . . 5 (((𝑋 gcd 𝑌) ∈ ℤ ∧ (𝑋 gcd 𝑌) ≠ 0 ∧ 𝑋 ∈ ℤ) → ((𝑋 gcd 𝑌) ∥ 𝑋 ↔ (𝑋 / (𝑋 gcd 𝑌)) ∈ ℤ))
2120biimpa 502 . . . 4 ((((𝑋 gcd 𝑌) ∈ ℤ ∧ (𝑋 gcd 𝑌) ≠ 0 ∧ 𝑋 ∈ ℤ) ∧ (𝑋 gcd 𝑌) ∥ 𝑋) → (𝑋 / (𝑋 gcd 𝑌)) ∈ ℤ)
229, 16, 6, 19, 21syl31anc 1480 . . 3 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) → (𝑋 / (𝑋 gcd 𝑌)) ∈ ℤ)
2318simprd 482 . . . 4 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) → (𝑋 gcd 𝑌) ∥ 𝑌)
24 dvdsval2 15185 . . . . 5 (((𝑋 gcd 𝑌) ∈ ℤ ∧ (𝑋 gcd 𝑌) ≠ 0 ∧ 𝑌 ∈ ℤ) → ((𝑋 gcd 𝑌) ∥ 𝑌 ↔ (𝑌 / (𝑋 gcd 𝑌)) ∈ ℤ))
2524biimpa 502 . . . 4 ((((𝑋 gcd 𝑌) ∈ ℤ ∧ (𝑋 gcd 𝑌) ≠ 0 ∧ 𝑌 ∈ ℤ) ∧ (𝑋 gcd 𝑌) ∥ 𝑌) → (𝑌 / (𝑋 gcd 𝑌)) ∈ ℤ)
269, 16, 7, 23, 25syl31anc 1480 . . 3 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) → (𝑌 / (𝑋 gcd 𝑌)) ∈ ℤ)
27 zringbas 20026 . . . . . . 7 ℤ = (Base‘ℤring)
28 qqhval2.0 . . . . . . 7 𝐵 = (Base‘𝑅)
2927, 28rhmf 18928 . . . . . 6 (𝐿 ∈ (ℤring RingHom 𝑅) → 𝐿:ℤ⟶𝐵)
305, 29syl 17 . . . . 5 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) → 𝐿:ℤ⟶𝐵)
3130, 26ffvelrnd 6523 . . . 4 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) → (𝐿‘(𝑌 / (𝑋 gcd 𝑌))) ∈ 𝐵)
32 ffn 6206 . . . . . 6 (𝐿:ℤ⟶𝐵𝐿 Fn ℤ)
3330, 32syl 17 . . . . 5 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) → 𝐿 Fn ℤ)
347zcnd 11675 . . . . . . . 8 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) → 𝑌 ∈ ℂ)
359zcnd 11675 . . . . . . . 8 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) → (𝑋 gcd 𝑌) ∈ ℂ)
3634, 35, 10, 16divne0d 11009 . . . . . . 7 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) → (𝑌 / (𝑋 gcd 𝑌)) ≠ 0)
37 ovex 6841 . . . . . . . . 9 (𝑌 / (𝑋 gcd 𝑌)) ∈ V
3837elsn 4336 . . . . . . . 8 ((𝑌 / (𝑋 gcd 𝑌)) ∈ {0} ↔ (𝑌 / (𝑋 gcd 𝑌)) = 0)
3938necon3bbii 2979 . . . . . . 7 (¬ (𝑌 / (𝑋 gcd 𝑌)) ∈ {0} ↔ (𝑌 / (𝑋 gcd 𝑌)) ≠ 0)
4036, 39sylibr 224 . . . . . 6 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) → ¬ (𝑌 / (𝑋 gcd 𝑌)) ∈ {0})
411ad2antrr 764 . . . . . . 7 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) → 𝑅 ∈ Ring)
42 simplr 809 . . . . . . 7 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) → (chr‘𝑅) = 0)
43 eqid 2760 . . . . . . . . 9 (0g𝑅) = (0g𝑅)
4428, 2, 43zrhker 30330 . . . . . . . 8 (𝑅 ∈ Ring → ((chr‘𝑅) = 0 ↔ (𝐿 “ {(0g𝑅)}) = {0}))
4544biimpa 502 . . . . . . 7 ((𝑅 ∈ Ring ∧ (chr‘𝑅) = 0) → (𝐿 “ {(0g𝑅)}) = {0})
4641, 42, 45syl2anc 696 . . . . . 6 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) → (𝐿 “ {(0g𝑅)}) = {0})
4740, 46neleqtrrd 2861 . . . . 5 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) → ¬ (𝑌 / (𝑋 gcd 𝑌)) ∈ (𝐿 “ {(0g𝑅)}))
48 elpreima 6500 . . . . . . . . 9 (𝐿 Fn ℤ → ((𝑌 / (𝑋 gcd 𝑌)) ∈ (𝐿 “ {(0g𝑅)}) ↔ ((𝑌 / (𝑋 gcd 𝑌)) ∈ ℤ ∧ (𝐿‘(𝑌 / (𝑋 gcd 𝑌))) ∈ {(0g𝑅)})))
4948baibd 986 . . . . . . . 8 ((𝐿 Fn ℤ ∧ (𝑌 / (𝑋 gcd 𝑌)) ∈ ℤ) → ((𝑌 / (𝑋 gcd 𝑌)) ∈ (𝐿 “ {(0g𝑅)}) ↔ (𝐿‘(𝑌 / (𝑋 gcd 𝑌))) ∈ {(0g𝑅)}))
5049biimprd 238 . . . . . . 7 ((𝐿 Fn ℤ ∧ (𝑌 / (𝑋 gcd 𝑌)) ∈ ℤ) → ((𝐿‘(𝑌 / (𝑋 gcd 𝑌))) ∈ {(0g𝑅)} → (𝑌 / (𝑋 gcd 𝑌)) ∈ (𝐿 “ {(0g𝑅)})))
5150con3dimp 456 . . . . . 6 (((𝐿 Fn ℤ ∧ (𝑌 / (𝑋 gcd 𝑌)) ∈ ℤ) ∧ ¬ (𝑌 / (𝑋 gcd 𝑌)) ∈ (𝐿 “ {(0g𝑅)})) → ¬ (𝐿‘(𝑌 / (𝑋 gcd 𝑌))) ∈ {(0g𝑅)})
52 fvex 6362 . . . . . . . 8 (𝐿‘(𝑌 / (𝑋 gcd 𝑌))) ∈ V
5352elsn 4336 . . . . . . 7 ((𝐿‘(𝑌 / (𝑋 gcd 𝑌))) ∈ {(0g𝑅)} ↔ (𝐿‘(𝑌 / (𝑋 gcd 𝑌))) = (0g𝑅))
5453necon3bbii 2979 . . . . . 6 (¬ (𝐿‘(𝑌 / (𝑋 gcd 𝑌))) ∈ {(0g𝑅)} ↔ (𝐿‘(𝑌 / (𝑋 gcd 𝑌))) ≠ (0g𝑅))
5551, 54sylib 208 . . . . 5 (((𝐿 Fn ℤ ∧ (𝑌 / (𝑋 gcd 𝑌)) ∈ ℤ) ∧ ¬ (𝑌 / (𝑋 gcd 𝑌)) ∈ (𝐿 “ {(0g𝑅)})) → (𝐿‘(𝑌 / (𝑋 gcd 𝑌))) ≠ (0g𝑅))
5633, 26, 47, 55syl21anc 1476 . . . 4 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) → (𝐿‘(𝑌 / (𝑋 gcd 𝑌))) ≠ (0g𝑅))
57 eqid 2760 . . . . . 6 (Unit‘𝑅) = (Unit‘𝑅)
5828, 57, 43drngunit 18954 . . . . 5 (𝑅 ∈ DivRing → ((𝐿‘(𝑌 / (𝑋 gcd 𝑌))) ∈ (Unit‘𝑅) ↔ ((𝐿‘(𝑌 / (𝑋 gcd 𝑌))) ∈ 𝐵 ∧ (𝐿‘(𝑌 / (𝑋 gcd 𝑌))) ≠ (0g𝑅))))
5958ad2antrr 764 . . . 4 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) → ((𝐿‘(𝑌 / (𝑋 gcd 𝑌))) ∈ (Unit‘𝑅) ↔ ((𝐿‘(𝑌 / (𝑋 gcd 𝑌))) ∈ 𝐵 ∧ (𝐿‘(𝑌 / (𝑋 gcd 𝑌))) ≠ (0g𝑅))))
6031, 56, 59mpbir2and 995 . . 3 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) → (𝐿‘(𝑌 / (𝑋 gcd 𝑌))) ∈ (Unit‘𝑅))
6130, 9ffvelrnd 6523 . . . 4 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) → (𝐿‘(𝑋 gcd 𝑌)) ∈ 𝐵)
62 ovex 6841 . . . . . . . . 9 (𝑋 gcd 𝑌) ∈ V
6362elsn 4336 . . . . . . . 8 ((𝑋 gcd 𝑌) ∈ {0} ↔ (𝑋 gcd 𝑌) = 0)
6463necon3bbii 2979 . . . . . . 7 (¬ (𝑋 gcd 𝑌) ∈ {0} ↔ (𝑋 gcd 𝑌) ≠ 0)
6516, 64sylibr 224 . . . . . 6 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) → ¬ (𝑋 gcd 𝑌) ∈ {0})
6665, 46neleqtrrd 2861 . . . . 5 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) → ¬ (𝑋 gcd 𝑌) ∈ (𝐿 “ {(0g𝑅)}))
67 elpreima 6500 . . . . . . . . 9 (𝐿 Fn ℤ → ((𝑋 gcd 𝑌) ∈ (𝐿 “ {(0g𝑅)}) ↔ ((𝑋 gcd 𝑌) ∈ ℤ ∧ (𝐿‘(𝑋 gcd 𝑌)) ∈ {(0g𝑅)})))
6867baibd 986 . . . . . . . 8 ((𝐿 Fn ℤ ∧ (𝑋 gcd 𝑌) ∈ ℤ) → ((𝑋 gcd 𝑌) ∈ (𝐿 “ {(0g𝑅)}) ↔ (𝐿‘(𝑋 gcd 𝑌)) ∈ {(0g𝑅)}))
6968biimprd 238 . . . . . . 7 ((𝐿 Fn ℤ ∧ (𝑋 gcd 𝑌) ∈ ℤ) → ((𝐿‘(𝑋 gcd 𝑌)) ∈ {(0g𝑅)} → (𝑋 gcd 𝑌) ∈ (𝐿 “ {(0g𝑅)})))
7069con3dimp 456 . . . . . 6 (((𝐿 Fn ℤ ∧ (𝑋 gcd 𝑌) ∈ ℤ) ∧ ¬ (𝑋 gcd 𝑌) ∈ (𝐿 “ {(0g𝑅)})) → ¬ (𝐿‘(𝑋 gcd 𝑌)) ∈ {(0g𝑅)})
71 fvex 6362 . . . . . . . 8 (𝐿‘(𝑋 gcd 𝑌)) ∈ V
7271elsn 4336 . . . . . . 7 ((𝐿‘(𝑋 gcd 𝑌)) ∈ {(0g𝑅)} ↔ (𝐿‘(𝑋 gcd 𝑌)) = (0g𝑅))
7372necon3bbii 2979 . . . . . 6 (¬ (𝐿‘(𝑋 gcd 𝑌)) ∈ {(0g𝑅)} ↔ (𝐿‘(𝑋 gcd 𝑌)) ≠ (0g𝑅))
7470, 73sylib 208 . . . . 5 (((𝐿 Fn ℤ ∧ (𝑋 gcd 𝑌) ∈ ℤ) ∧ ¬ (𝑋 gcd 𝑌) ∈ (𝐿 “ {(0g𝑅)})) → (𝐿‘(𝑋 gcd 𝑌)) ≠ (0g𝑅))
7533, 9, 66, 74syl21anc 1476 . . . 4 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) → (𝐿‘(𝑋 gcd 𝑌)) ≠ (0g𝑅))
7628, 57, 43drngunit 18954 . . . . 5 (𝑅 ∈ DivRing → ((𝐿‘(𝑋 gcd 𝑌)) ∈ (Unit‘𝑅) ↔ ((𝐿‘(𝑋 gcd 𝑌)) ∈ 𝐵 ∧ (𝐿‘(𝑋 gcd 𝑌)) ≠ (0g𝑅))))
7776ad2antrr 764 . . . 4 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) → ((𝐿‘(𝑋 gcd 𝑌)) ∈ (Unit‘𝑅) ↔ ((𝐿‘(𝑋 gcd 𝑌)) ∈ 𝐵 ∧ (𝐿‘(𝑋 gcd 𝑌)) ≠ (0g𝑅))))
7861, 75, 77mpbir2and 995 . . 3 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) → (𝐿‘(𝑋 gcd 𝑌)) ∈ (Unit‘𝑅))
79 qqhval2.1 . . . 4 / = (/r𝑅)
80 zringmulr 20029 . . . 4 · = (.r‘ℤring)
8157, 27, 79, 80rhmdvd 30130 . . 3 ((𝐿 ∈ (ℤring RingHom 𝑅) ∧ ((𝑋 / (𝑋 gcd 𝑌)) ∈ ℤ ∧ (𝑌 / (𝑋 gcd 𝑌)) ∈ ℤ ∧ (𝑋 gcd 𝑌) ∈ ℤ) ∧ ((𝐿‘(𝑌 / (𝑋 gcd 𝑌))) ∈ (Unit‘𝑅) ∧ (𝐿‘(𝑋 gcd 𝑌)) ∈ (Unit‘𝑅))) → ((𝐿‘(𝑋 / (𝑋 gcd 𝑌))) / (𝐿‘(𝑌 / (𝑋 gcd 𝑌)))) = ((𝐿‘((𝑋 / (𝑋 gcd 𝑌)) · (𝑋 gcd 𝑌))) / (𝐿‘((𝑌 / (𝑋 gcd 𝑌)) · (𝑋 gcd 𝑌)))))
825, 22, 26, 9, 60, 78, 81syl132anc 1495 . 2 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) → ((𝐿‘(𝑋 / (𝑋 gcd 𝑌))) / (𝐿‘(𝑌 / (𝑋 gcd 𝑌)))) = ((𝐿‘((𝑋 / (𝑋 gcd 𝑌)) · (𝑋 gcd 𝑌))) / (𝐿‘((𝑌 / (𝑋 gcd 𝑌)) · (𝑋 gcd 𝑌)))))
83 divnumden 15658 . . . . . . . 8 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℕ) → ((numer‘(𝑋 / 𝑌)) = (𝑋 / (𝑋 gcd 𝑌)) ∧ (denom‘(𝑋 / 𝑌)) = (𝑌 / (𝑋 gcd 𝑌))))
846, 83sylan 489 . . . . . . 7 ((((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) ∧ 𝑌 ∈ ℕ) → ((numer‘(𝑋 / 𝑌)) = (𝑋 / (𝑋 gcd 𝑌)) ∧ (denom‘(𝑋 / 𝑌)) = (𝑌 / (𝑋 gcd 𝑌))))
8584simpld 477 . . . . . 6 ((((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) ∧ 𝑌 ∈ ℕ) → (numer‘(𝑋 / 𝑌)) = (𝑋 / (𝑋 gcd 𝑌)))
8685eqcomd 2766 . . . . 5 ((((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) ∧ 𝑌 ∈ ℕ) → (𝑋 / (𝑋 gcd 𝑌)) = (numer‘(𝑋 / 𝑌)))
8786fveq2d 6356 . . . 4 ((((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) ∧ 𝑌 ∈ ℕ) → (𝐿‘(𝑋 / (𝑋 gcd 𝑌))) = (𝐿‘(numer‘(𝑋 / 𝑌))))
8884simprd 482 . . . . . 6 ((((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) ∧ 𝑌 ∈ ℕ) → (denom‘(𝑋 / 𝑌)) = (𝑌 / (𝑋 gcd 𝑌)))
8988eqcomd 2766 . . . . 5 ((((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) ∧ 𝑌 ∈ ℕ) → (𝑌 / (𝑋 gcd 𝑌)) = (denom‘(𝑋 / 𝑌)))
9089fveq2d 6356 . . . 4 ((((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) ∧ 𝑌 ∈ ℕ) → (𝐿‘(𝑌 / (𝑋 gcd 𝑌))) = (𝐿‘(denom‘(𝑋 / 𝑌))))
9187, 90oveq12d 6831 . . 3 ((((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) ∧ 𝑌 ∈ ℕ) → ((𝐿‘(𝑋 / (𝑋 gcd 𝑌))) / (𝐿‘(𝑌 / (𝑋 gcd 𝑌)))) = ((𝐿‘(numer‘(𝑋 / 𝑌))) / (𝐿‘(denom‘(𝑋 / 𝑌)))))
9222adantr 472 . . . . . . . . 9 ((((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) ∧ -𝑌 ∈ ℕ) → (𝑋 / (𝑋 gcd 𝑌)) ∈ ℤ)
9392zcnd 11675 . . . . . . . 8 ((((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) ∧ -𝑌 ∈ ℕ) → (𝑋 / (𝑋 gcd 𝑌)) ∈ ℂ)
9493mulm1d 10674 . . . . . . 7 ((((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) ∧ -𝑌 ∈ ℕ) → (-1 · (𝑋 / (𝑋 gcd 𝑌))) = -(𝑋 / (𝑋 gcd 𝑌)))
95 neg1cn 11316 . . . . . . . . 9 -1 ∈ ℂ
9695a1i 11 . . . . . . . 8 ((((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) ∧ -𝑌 ∈ ℕ) → -1 ∈ ℂ)
9796, 93mulcomd 10253 . . . . . . 7 ((((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) ∧ -𝑌 ∈ ℕ) → (-1 · (𝑋 / (𝑋 gcd 𝑌))) = ((𝑋 / (𝑋 gcd 𝑌)) · -1))
9894, 97eqtr3d 2796 . . . . . 6 ((((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) ∧ -𝑌 ∈ ℕ) → -(𝑋 / (𝑋 gcd 𝑌)) = ((𝑋 / (𝑋 gcd 𝑌)) · -1))
9998fveq2d 6356 . . . . 5 ((((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) ∧ -𝑌 ∈ ℕ) → (𝐿‘-(𝑋 / (𝑋 gcd 𝑌))) = (𝐿‘((𝑋 / (𝑋 gcd 𝑌)) · -1)))
10026adantr 472 . . . . . . . . 9 ((((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) ∧ -𝑌 ∈ ℕ) → (𝑌 / (𝑋 gcd 𝑌)) ∈ ℤ)
101100zcnd 11675 . . . . . . . 8 ((((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) ∧ -𝑌 ∈ ℕ) → (𝑌 / (𝑋 gcd 𝑌)) ∈ ℂ)
102101mulm1d 10674 . . . . . . 7 ((((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) ∧ -𝑌 ∈ ℕ) → (-1 · (𝑌 / (𝑋 gcd 𝑌))) = -(𝑌 / (𝑋 gcd 𝑌)))
10396, 101mulcomd 10253 . . . . . . 7 ((((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) ∧ -𝑌 ∈ ℕ) → (-1 · (𝑌 / (𝑋 gcd 𝑌))) = ((𝑌 / (𝑋 gcd 𝑌)) · -1))
104102, 103eqtr3d 2796 . . . . . 6 ((((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) ∧ -𝑌 ∈ ℕ) → -(𝑌 / (𝑋 gcd 𝑌)) = ((𝑌 / (𝑋 gcd 𝑌)) · -1))
105104fveq2d 6356 . . . . 5 ((((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) ∧ -𝑌 ∈ ℕ) → (𝐿‘-(𝑌 / (𝑋 gcd 𝑌))) = (𝐿‘((𝑌 / (𝑋 gcd 𝑌)) · -1)))
10699, 105oveq12d 6831 . . . 4 ((((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) ∧ -𝑌 ∈ ℕ) → ((𝐿‘-(𝑋 / (𝑋 gcd 𝑌))) / (𝐿‘-(𝑌 / (𝑋 gcd 𝑌)))) = ((𝐿‘((𝑋 / (𝑋 gcd 𝑌)) · -1)) / (𝐿‘((𝑌 / (𝑋 gcd 𝑌)) · -1))))
1076adantr 472 . . . . . . . 8 ((((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) ∧ -𝑌 ∈ ℕ) → 𝑋 ∈ ℤ)
1087adantr 472 . . . . . . . 8 ((((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) ∧ -𝑌 ∈ ℕ) → 𝑌 ∈ ℤ)
109 simpr 479 . . . . . . . 8 ((((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) ∧ -𝑌 ∈ ℕ) → -𝑌 ∈ ℕ)
110 divnumden2 29873 . . . . . . . 8 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ -𝑌 ∈ ℕ) → ((numer‘(𝑋 / 𝑌)) = -(𝑋 / (𝑋 gcd 𝑌)) ∧ (denom‘(𝑋 / 𝑌)) = -(𝑌 / (𝑋 gcd 𝑌))))
111107, 108, 109, 110syl3anc 1477 . . . . . . 7 ((((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) ∧ -𝑌 ∈ ℕ) → ((numer‘(𝑋 / 𝑌)) = -(𝑋 / (𝑋 gcd 𝑌)) ∧ (denom‘(𝑋 / 𝑌)) = -(𝑌 / (𝑋 gcd 𝑌))))
112111simpld 477 . . . . . 6 ((((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) ∧ -𝑌 ∈ ℕ) → (numer‘(𝑋 / 𝑌)) = -(𝑋 / (𝑋 gcd 𝑌)))
113112fveq2d 6356 . . . . 5 ((((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) ∧ -𝑌 ∈ ℕ) → (𝐿‘(numer‘(𝑋 / 𝑌))) = (𝐿‘-(𝑋 / (𝑋 gcd 𝑌))))
114111simprd 482 . . . . . 6 ((((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) ∧ -𝑌 ∈ ℕ) → (denom‘(𝑋 / 𝑌)) = -(𝑌 / (𝑋 gcd 𝑌)))
115114fveq2d 6356 . . . . 5 ((((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) ∧ -𝑌 ∈ ℕ) → (𝐿‘(denom‘(𝑋 / 𝑌))) = (𝐿‘-(𝑌 / (𝑋 gcd 𝑌))))
116113, 115oveq12d 6831 . . . 4 ((((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) ∧ -𝑌 ∈ ℕ) → ((𝐿‘(numer‘(𝑋 / 𝑌))) / (𝐿‘(denom‘(𝑋 / 𝑌)))) = ((𝐿‘-(𝑋 / (𝑋 gcd 𝑌))) / (𝐿‘-(𝑌 / (𝑋 gcd 𝑌)))))
1175adantr 472 . . . . 5 ((((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) ∧ -𝑌 ∈ ℕ) → 𝐿 ∈ (ℤring RingHom 𝑅))
118 1zzd 11600 . . . . . 6 ((((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) ∧ -𝑌 ∈ ℕ) → 1 ∈ ℤ)
119118znegcld 11676 . . . . 5 ((((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) ∧ -𝑌 ∈ ℕ) → -1 ∈ ℤ)
12060adantr 472 . . . . 5 ((((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) ∧ -𝑌 ∈ ℕ) → (𝐿‘(𝑌 / (𝑋 gcd 𝑌))) ∈ (Unit‘𝑅))
121 neg1z 11605 . . . . . . . 8 -1 ∈ ℤ
122 ax-1cn 10186 . . . . . . . . . 10 1 ∈ ℂ
123122absnegi 14338 . . . . . . . . 9 (abs‘-1) = (abs‘1)
124 abs1 14236 . . . . . . . . 9 (abs‘1) = 1
125123, 124eqtri 2782 . . . . . . . 8 (abs‘-1) = 1
126 zringunit 20038 . . . . . . . 8 (-1 ∈ (Unit‘ℤring) ↔ (-1 ∈ ℤ ∧ (abs‘-1) = 1))
127121, 125, 126mpbir2an 993 . . . . . . 7 -1 ∈ (Unit‘ℤring)
128127a1i 11 . . . . . 6 ((((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) ∧ -𝑌 ∈ ℕ) → -1 ∈ (Unit‘ℤring))
129 elrhmunit 30129 . . . . . 6 ((𝐿 ∈ (ℤring RingHom 𝑅) ∧ -1 ∈ (Unit‘ℤring)) → (𝐿‘-1) ∈ (Unit‘𝑅))
130117, 128, 129syl2anc 696 . . . . 5 ((((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) ∧ -𝑌 ∈ ℕ) → (𝐿‘-1) ∈ (Unit‘𝑅))
13157, 27, 79, 80rhmdvd 30130 . . . . 5 ((𝐿 ∈ (ℤring RingHom 𝑅) ∧ ((𝑋 / (𝑋 gcd 𝑌)) ∈ ℤ ∧ (𝑌 / (𝑋 gcd 𝑌)) ∈ ℤ ∧ -1 ∈ ℤ) ∧ ((𝐿‘(𝑌 / (𝑋 gcd 𝑌))) ∈ (Unit‘𝑅) ∧ (𝐿‘-1) ∈ (Unit‘𝑅))) → ((𝐿‘(𝑋 / (𝑋 gcd 𝑌))) / (𝐿‘(𝑌 / (𝑋 gcd 𝑌)))) = ((𝐿‘((𝑋 / (𝑋 gcd 𝑌)) · -1)) / (𝐿‘((𝑌 / (𝑋 gcd 𝑌)) · -1))))
132117, 92, 100, 119, 120, 130, 131syl132anc 1495 . . . 4 ((((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) ∧ -𝑌 ∈ ℕ) → ((𝐿‘(𝑋 / (𝑋 gcd 𝑌))) / (𝐿‘(𝑌 / (𝑋 gcd 𝑌)))) = ((𝐿‘((𝑋 / (𝑋 gcd 𝑌)) · -1)) / (𝐿‘((𝑌 / (𝑋 gcd 𝑌)) · -1))))
133106, 116, 1323eqtr4rd 2805 . . 3 ((((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) ∧ -𝑌 ∈ ℕ) → ((𝐿‘(𝑋 / (𝑋 gcd 𝑌))) / (𝐿‘(𝑌 / (𝑋 gcd 𝑌)))) = ((𝐿‘(numer‘(𝑋 / 𝑌))) / (𝐿‘(denom‘(𝑋 / 𝑌)))))
134 simp3 1133 . . . . . 6 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0) → 𝑌 ≠ 0)
135134neneqd 2937 . . . . 5 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0) → ¬ 𝑌 = 0)
136 simp2 1132 . . . . . . . 8 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0) → 𝑌 ∈ ℤ)
137 elz 11571 . . . . . . . 8 (𝑌 ∈ ℤ ↔ (𝑌 ∈ ℝ ∧ (𝑌 = 0 ∨ 𝑌 ∈ ℕ ∨ -𝑌 ∈ ℕ)))
138136, 137sylib 208 . . . . . . 7 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0) → (𝑌 ∈ ℝ ∧ (𝑌 = 0 ∨ 𝑌 ∈ ℕ ∨ -𝑌 ∈ ℕ)))
139138simprd 482 . . . . . 6 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0) → (𝑌 = 0 ∨ 𝑌 ∈ ℕ ∨ -𝑌 ∈ ℕ))
140 3orass 1075 . . . . . 6 ((𝑌 = 0 ∨ 𝑌 ∈ ℕ ∨ -𝑌 ∈ ℕ) ↔ (𝑌 = 0 ∨ (𝑌 ∈ ℕ ∨ -𝑌 ∈ ℕ)))
141139, 140sylib 208 . . . . 5 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0) → (𝑌 = 0 ∨ (𝑌 ∈ ℕ ∨ -𝑌 ∈ ℕ)))
142 orel1 396 . . . . 5 𝑌 = 0 → ((𝑌 = 0 ∨ (𝑌 ∈ ℕ ∨ -𝑌 ∈ ℕ)) → (𝑌 ∈ ℕ ∨ -𝑌 ∈ ℕ)))
143135, 141, 142sylc 65 . . . 4 ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0) → (𝑌 ∈ ℕ ∨ -𝑌 ∈ ℕ))
144143adantl 473 . . 3 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) → (𝑌 ∈ ℕ ∨ -𝑌 ∈ ℕ))
14591, 133, 144mpjaodan 862 . 2 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) → ((𝐿‘(𝑋 / (𝑋 gcd 𝑌))) / (𝐿‘(𝑌 / (𝑋 gcd 𝑌)))) = ((𝐿‘(numer‘(𝑋 / 𝑌))) / (𝐿‘(denom‘(𝑋 / 𝑌)))))
1466zcnd 11675 . . . . 5 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) → 𝑋 ∈ ℂ)
147146, 35, 16divcan1d 10994 . . . 4 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) → ((𝑋 / (𝑋 gcd 𝑌)) · (𝑋 gcd 𝑌)) = 𝑋)
148147fveq2d 6356 . . 3 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) → (𝐿‘((𝑋 / (𝑋 gcd 𝑌)) · (𝑋 gcd 𝑌))) = (𝐿𝑋))
14934, 35, 16divcan1d 10994 . . . 4 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) → ((𝑌 / (𝑋 gcd 𝑌)) · (𝑋 gcd 𝑌)) = 𝑌)
150149fveq2d 6356 . . 3 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) → (𝐿‘((𝑌 / (𝑋 gcd 𝑌)) · (𝑋 gcd 𝑌))) = (𝐿𝑌))
151148, 150oveq12d 6831 . 2 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) → ((𝐿‘((𝑋 / (𝑋 gcd 𝑌)) · (𝑋 gcd 𝑌))) / (𝐿‘((𝑌 / (𝑋 gcd 𝑌)) · (𝑋 gcd 𝑌)))) = ((𝐿𝑋) / (𝐿𝑌)))
15282, 145, 1513eqtr3d 2802 1 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ∧ 𝑌 ≠ 0)) → ((𝐿‘(numer‘(𝑋 / 𝑌))) / (𝐿‘(denom‘(𝑋 / 𝑌)))) = ((𝐿𝑋) / (𝐿𝑌)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 382  wa 383  w3o 1071  w3a 1072   = wceq 1632  wcel 2139  wne 2932  {csn 4321   class class class wbr 4804  ccnv 5265  cima 5269   Fn wfn 6044  wf 6045  cfv 6049  (class class class)co 6813  cc 10126  cr 10127  0cc0 10128  1c1 10129   · cmul 10133  -cneg 10459   / cdiv 10876  cn 11212  cz 11569  abscabs 14173  cdvds 15182   gcd cgcd 15418  numercnumer 15643  denomcdenom 15644  Basecbs 16059  0gc0g 16302  Ringcrg 18747  Unitcui 18839  /rcdvr 18882   RingHom crh 18914  DivRingcdr 18949  ringzring 20020  ℤRHomczrh 20050  chrcchr 20052
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-inf2 8711  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205  ax-pre-sup 10206  ax-addf 10207  ax-mulf 10208
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-om 7231  df-1st 7333  df-2nd 7334  df-tpos 7521  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-1o 7729  df-oadd 7733  df-er 7911  df-map 8025  df-en 8122  df-dom 8123  df-sdom 8124  df-fin 8125  df-sup 8513  df-inf 8514  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-div 10877  df-nn 11213  df-2 11271  df-3 11272  df-4 11273  df-5 11274  df-6 11275  df-7 11276  df-8 11277  df-9 11278  df-n0 11485  df-z 11570  df-dec 11686  df-uz 11880  df-q 11982  df-rp 12026  df-fz 12520  df-fl 12787  df-mod 12863  df-seq 12996  df-exp 13055  df-cj 14038  df-re 14039  df-im 14040  df-sqrt 14174  df-abs 14175  df-dvds 15183  df-gcd 15419  df-numer 15645  df-denom 15646  df-gz 15836  df-struct 16061  df-ndx 16062  df-slot 16063  df-base 16065  df-sets 16066  df-ress 16067  df-plusg 16156  df-mulr 16157  df-starv 16158  df-tset 16162  df-ple 16163  df-ds 16166  df-unif 16167  df-0g 16304  df-mgm 17443  df-sgrp 17485  df-mnd 17496  df-mhm 17536  df-grp 17626  df-minusg 17627  df-sbg 17628  df-mulg 17742  df-subg 17792  df-ghm 17859  df-od 18148  df-cmn 18395  df-mgp 18690  df-ur 18702  df-ring 18749  df-cring 18750  df-oppr 18823  df-dvdsr 18841  df-unit 18842  df-invr 18872  df-dvr 18883  df-rnghom 18917  df-drng 18951  df-subrg 18980  df-cnfld 19949  df-zring 20021  df-zrh 20054  df-chr 20056
This theorem is referenced by:  qqhval2  30335  qqhvq  30340
  Copyright terms: Public domain W3C validator