Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  qqhval2 Structured version   Visualization version   GIF version

Theorem qqhval2 30154
Description: Value of the canonical homormorphism from the rational number when the target ring is a division ring. (Contributed by Thierry Arnoux, 26-Oct-2017.)
Hypotheses
Ref Expression
qqhval2.0 𝐵 = (Base‘𝑅)
qqhval2.1 / = (/r𝑅)
qqhval2.2 𝐿 = (ℤRHom‘𝑅)
Assertion
Ref Expression
qqhval2 ((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) → (ℚHom‘𝑅) = (𝑞 ∈ ℚ ↦ ((𝐿‘(numer‘𝑞)) / (𝐿‘(denom‘𝑞)))))
Distinct variable groups:   / ,𝑞   𝐵,𝑞   𝐿,𝑞   𝑅,𝑞

Proof of Theorem qqhval2
Dummy variables 𝑒 𝑠 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 3243 . . . 4 (𝑅 ∈ DivRing → 𝑅 ∈ V)
21adantr 480 . . 3 ((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) → 𝑅 ∈ V)
3 qqhval2.1 . . . 4 / = (/r𝑅)
4 eqid 2651 . . . 4 (1r𝑅) = (1r𝑅)
5 qqhval2.2 . . . 4 𝐿 = (ℤRHom‘𝑅)
63, 4, 5qqhval 30146 . . 3 (𝑅 ∈ V → (ℚHom‘𝑅) = ran (𝑥 ∈ ℤ, 𝑦 ∈ (𝐿 “ (Unit‘𝑅)) ↦ ⟨(𝑥 / 𝑦), ((𝐿𝑥) / (𝐿𝑦))⟩))
72, 6syl 17 . 2 ((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) → (ℚHom‘𝑅) = ran (𝑥 ∈ ℤ, 𝑦 ∈ (𝐿 “ (Unit‘𝑅)) ↦ ⟨(𝑥 / 𝑦), ((𝐿𝑥) / (𝐿𝑦))⟩))
8 eqidd 2652 . . . 4 ((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) → ℤ = ℤ)
9 qqhval2.0 . . . . 5 𝐵 = (Base‘𝑅)
10 eqid 2651 . . . . 5 (0g𝑅) = (0g𝑅)
119, 5, 10zrhunitpreima 30150 . . . 4 ((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) → (𝐿 “ (Unit‘𝑅)) = (ℤ ∖ {0}))
12 mpt2eq12 6757 . . . 4 ((ℤ = ℤ ∧ (𝐿 “ (Unit‘𝑅)) = (ℤ ∖ {0})) → (𝑥 ∈ ℤ, 𝑦 ∈ (𝐿 “ (Unit‘𝑅)) ↦ ⟨(𝑥 / 𝑦), ((𝐿𝑥) / (𝐿𝑦))⟩) = (𝑥 ∈ ℤ, 𝑦 ∈ (ℤ ∖ {0}) ↦ ⟨(𝑥 / 𝑦), ((𝐿𝑥) / (𝐿𝑦))⟩))
138, 11, 12syl2anc 694 . . 3 ((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) → (𝑥 ∈ ℤ, 𝑦 ∈ (𝐿 “ (Unit‘𝑅)) ↦ ⟨(𝑥 / 𝑦), ((𝐿𝑥) / (𝐿𝑦))⟩) = (𝑥 ∈ ℤ, 𝑦 ∈ (ℤ ∖ {0}) ↦ ⟨(𝑥 / 𝑦), ((𝐿𝑥) / (𝐿𝑦))⟩))
1413rneqd 5385 . 2 ((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) → ran (𝑥 ∈ ℤ, 𝑦 ∈ (𝐿 “ (Unit‘𝑅)) ↦ ⟨(𝑥 / 𝑦), ((𝐿𝑥) / (𝐿𝑦))⟩) = ran (𝑥 ∈ ℤ, 𝑦 ∈ (ℤ ∖ {0}) ↦ ⟨(𝑥 / 𝑦), ((𝐿𝑥) / (𝐿𝑦))⟩))
15 nfv 1883 . . . 4 𝑒(𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0)
16 nfab1 2795 . . . 4 𝑒{𝑒 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ (ℤ ∖ {0})𝑒 = ⟨(𝑥 / 𝑦), ((𝐿𝑥) / (𝐿𝑦))⟩}
17 nfcv 2793 . . . 4 𝑒{⟨𝑞, 𝑠⟩ ∣ (𝑞 ∈ ℚ ∧ 𝑠 = ((𝐿‘(numer‘𝑞)) / (𝐿‘(denom‘𝑞))))}
18 simpr 476 . . . . . . . . . 10 ((((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ (ℤ ∖ {0}))) ∧ 𝑒 = ⟨(𝑥 / 𝑦), ((𝐿𝑥) / (𝐿𝑦))⟩) → 𝑒 = ⟨(𝑥 / 𝑦), ((𝐿𝑥) / (𝐿𝑦))⟩)
19 zssq 11833 . . . . . . . . . . . 12 ℤ ⊆ ℚ
20 simplrl 817 . . . . . . . . . . . 12 ((((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ (ℤ ∖ {0}))) ∧ 𝑒 = ⟨(𝑥 / 𝑦), ((𝐿𝑥) / (𝐿𝑦))⟩) → 𝑥 ∈ ℤ)
2119, 20sseldi 3634 . . . . . . . . . . 11 ((((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ (ℤ ∖ {0}))) ∧ 𝑒 = ⟨(𝑥 / 𝑦), ((𝐿𝑥) / (𝐿𝑦))⟩) → 𝑥 ∈ ℚ)
22 simplrr 818 . . . . . . . . . . . . 13 ((((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ (ℤ ∖ {0}))) ∧ 𝑒 = ⟨(𝑥 / 𝑦), ((𝐿𝑥) / (𝐿𝑦))⟩) → 𝑦 ∈ (ℤ ∖ {0}))
2322eldifad 3619 . . . . . . . . . . . 12 ((((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ (ℤ ∖ {0}))) ∧ 𝑒 = ⟨(𝑥 / 𝑦), ((𝐿𝑥) / (𝐿𝑦))⟩) → 𝑦 ∈ ℤ)
2419, 23sseldi 3634 . . . . . . . . . . 11 ((((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ (ℤ ∖ {0}))) ∧ 𝑒 = ⟨(𝑥 / 𝑦), ((𝐿𝑥) / (𝐿𝑦))⟩) → 𝑦 ∈ ℚ)
2522eldifbd 3620 . . . . . . . . . . . 12 ((((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ (ℤ ∖ {0}))) ∧ 𝑒 = ⟨(𝑥 / 𝑦), ((𝐿𝑥) / (𝐿𝑦))⟩) → ¬ 𝑦 ∈ {0})
26 velsn 4226 . . . . . . . . . . . . 13 (𝑦 ∈ {0} ↔ 𝑦 = 0)
2726necon3bbii 2870 . . . . . . . . . . . 12 𝑦 ∈ {0} ↔ 𝑦 ≠ 0)
2825, 27sylib 208 . . . . . . . . . . 11 ((((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ (ℤ ∖ {0}))) ∧ 𝑒 = ⟨(𝑥 / 𝑦), ((𝐿𝑥) / (𝐿𝑦))⟩) → 𝑦 ≠ 0)
29 qdivcl 11847 . . . . . . . . . . 11 ((𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) → (𝑥 / 𝑦) ∈ ℚ)
3021, 24, 28, 29syl3anc 1366 . . . . . . . . . 10 ((((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ (ℤ ∖ {0}))) ∧ 𝑒 = ⟨(𝑥 / 𝑦), ((𝐿𝑥) / (𝐿𝑦))⟩) → (𝑥 / 𝑦) ∈ ℚ)
31 simplll 813 . . . . . . . . . . 11 ((((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ (ℤ ∖ {0}))) ∧ 𝑒 = ⟨(𝑥 / 𝑦), ((𝐿𝑥) / (𝐿𝑦))⟩) → 𝑅 ∈ DivRing)
32 simpllr 815 . . . . . . . . . . 11 ((((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ (ℤ ∖ {0}))) ∧ 𝑒 = ⟨(𝑥 / 𝑦), ((𝐿𝑥) / (𝐿𝑦))⟩) → (chr‘𝑅) = 0)
339, 3, 5qqhval2lem 30153 . . . . . . . . . . . 12 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ∧ 𝑦 ≠ 0)) → ((𝐿‘(numer‘(𝑥 / 𝑦))) / (𝐿‘(denom‘(𝑥 / 𝑦)))) = ((𝐿𝑥) / (𝐿𝑦)))
3433eqcomd 2657 . . . . . . . . . . 11 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ∧ 𝑦 ≠ 0)) → ((𝐿𝑥) / (𝐿𝑦)) = ((𝐿‘(numer‘(𝑥 / 𝑦))) / (𝐿‘(denom‘(𝑥 / 𝑦)))))
3531, 32, 20, 23, 28, 34syl23anc 1373 . . . . . . . . . 10 ((((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ (ℤ ∖ {0}))) ∧ 𝑒 = ⟨(𝑥 / 𝑦), ((𝐿𝑥) / (𝐿𝑦))⟩) → ((𝐿𝑥) / (𝐿𝑦)) = ((𝐿‘(numer‘(𝑥 / 𝑦))) / (𝐿‘(denom‘(𝑥 / 𝑦)))))
36 ovex 6718 . . . . . . . . . . 11 (𝑥 / 𝑦) ∈ V
37 ovex 6718 . . . . . . . . . . 11 ((𝐿𝑥) / (𝐿𝑦)) ∈ V
38 opeq12 4435 . . . . . . . . . . . . 13 ((𝑞 = (𝑥 / 𝑦) ∧ 𝑠 = ((𝐿𝑥) / (𝐿𝑦))) → ⟨𝑞, 𝑠⟩ = ⟨(𝑥 / 𝑦), ((𝐿𝑥) / (𝐿𝑦))⟩)
3938eqeq2d 2661 . . . . . . . . . . . 12 ((𝑞 = (𝑥 / 𝑦) ∧ 𝑠 = ((𝐿𝑥) / (𝐿𝑦))) → (𝑒 = ⟨𝑞, 𝑠⟩ ↔ 𝑒 = ⟨(𝑥 / 𝑦), ((𝐿𝑥) / (𝐿𝑦))⟩))
40 simpl 472 . . . . . . . . . . . . . 14 ((𝑞 = (𝑥 / 𝑦) ∧ 𝑠 = ((𝐿𝑥) / (𝐿𝑦))) → 𝑞 = (𝑥 / 𝑦))
4140eleq1d 2715 . . . . . . . . . . . . 13 ((𝑞 = (𝑥 / 𝑦) ∧ 𝑠 = ((𝐿𝑥) / (𝐿𝑦))) → (𝑞 ∈ ℚ ↔ (𝑥 / 𝑦) ∈ ℚ))
42 simpr 476 . . . . . . . . . . . . . 14 ((𝑞 = (𝑥 / 𝑦) ∧ 𝑠 = ((𝐿𝑥) / (𝐿𝑦))) → 𝑠 = ((𝐿𝑥) / (𝐿𝑦)))
4340fveq2d 6233 . . . . . . . . . . . . . . . 16 ((𝑞 = (𝑥 / 𝑦) ∧ 𝑠 = ((𝐿𝑥) / (𝐿𝑦))) → (numer‘𝑞) = (numer‘(𝑥 / 𝑦)))
4443fveq2d 6233 . . . . . . . . . . . . . . 15 ((𝑞 = (𝑥 / 𝑦) ∧ 𝑠 = ((𝐿𝑥) / (𝐿𝑦))) → (𝐿‘(numer‘𝑞)) = (𝐿‘(numer‘(𝑥 / 𝑦))))
4540fveq2d 6233 . . . . . . . . . . . . . . . 16 ((𝑞 = (𝑥 / 𝑦) ∧ 𝑠 = ((𝐿𝑥) / (𝐿𝑦))) → (denom‘𝑞) = (denom‘(𝑥 / 𝑦)))
4645fveq2d 6233 . . . . . . . . . . . . . . 15 ((𝑞 = (𝑥 / 𝑦) ∧ 𝑠 = ((𝐿𝑥) / (𝐿𝑦))) → (𝐿‘(denom‘𝑞)) = (𝐿‘(denom‘(𝑥 / 𝑦))))
4744, 46oveq12d 6708 . . . . . . . . . . . . . 14 ((𝑞 = (𝑥 / 𝑦) ∧ 𝑠 = ((𝐿𝑥) / (𝐿𝑦))) → ((𝐿‘(numer‘𝑞)) / (𝐿‘(denom‘𝑞))) = ((𝐿‘(numer‘(𝑥 / 𝑦))) / (𝐿‘(denom‘(𝑥 / 𝑦)))))
4842, 47eqeq12d 2666 . . . . . . . . . . . . 13 ((𝑞 = (𝑥 / 𝑦) ∧ 𝑠 = ((𝐿𝑥) / (𝐿𝑦))) → (𝑠 = ((𝐿‘(numer‘𝑞)) / (𝐿‘(denom‘𝑞))) ↔ ((𝐿𝑥) / (𝐿𝑦)) = ((𝐿‘(numer‘(𝑥 / 𝑦))) / (𝐿‘(denom‘(𝑥 / 𝑦))))))
4941, 48anbi12d 747 . . . . . . . . . . . 12 ((𝑞 = (𝑥 / 𝑦) ∧ 𝑠 = ((𝐿𝑥) / (𝐿𝑦))) → ((𝑞 ∈ ℚ ∧ 𝑠 = ((𝐿‘(numer‘𝑞)) / (𝐿‘(denom‘𝑞)))) ↔ ((𝑥 / 𝑦) ∈ ℚ ∧ ((𝐿𝑥) / (𝐿𝑦)) = ((𝐿‘(numer‘(𝑥 / 𝑦))) / (𝐿‘(denom‘(𝑥 / 𝑦)))))))
5039, 49anbi12d 747 . . . . . . . . . . 11 ((𝑞 = (𝑥 / 𝑦) ∧ 𝑠 = ((𝐿𝑥) / (𝐿𝑦))) → ((𝑒 = ⟨𝑞, 𝑠⟩ ∧ (𝑞 ∈ ℚ ∧ 𝑠 = ((𝐿‘(numer‘𝑞)) / (𝐿‘(denom‘𝑞))))) ↔ (𝑒 = ⟨(𝑥 / 𝑦), ((𝐿𝑥) / (𝐿𝑦))⟩ ∧ ((𝑥 / 𝑦) ∈ ℚ ∧ ((𝐿𝑥) / (𝐿𝑦)) = ((𝐿‘(numer‘(𝑥 / 𝑦))) / (𝐿‘(denom‘(𝑥 / 𝑦))))))))
5136, 37, 50spc2ev 3332 . . . . . . . . . 10 ((𝑒 = ⟨(𝑥 / 𝑦), ((𝐿𝑥) / (𝐿𝑦))⟩ ∧ ((𝑥 / 𝑦) ∈ ℚ ∧ ((𝐿𝑥) / (𝐿𝑦)) = ((𝐿‘(numer‘(𝑥 / 𝑦))) / (𝐿‘(denom‘(𝑥 / 𝑦)))))) → ∃𝑞𝑠(𝑒 = ⟨𝑞, 𝑠⟩ ∧ (𝑞 ∈ ℚ ∧ 𝑠 = ((𝐿‘(numer‘𝑞)) / (𝐿‘(denom‘𝑞))))))
5218, 30, 35, 51syl12anc 1364 . . . . . . . . 9 ((((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ (ℤ ∖ {0}))) ∧ 𝑒 = ⟨(𝑥 / 𝑦), ((𝐿𝑥) / (𝐿𝑦))⟩) → ∃𝑞𝑠(𝑒 = ⟨𝑞, 𝑠⟩ ∧ (𝑞 ∈ ℚ ∧ 𝑠 = ((𝐿‘(numer‘𝑞)) / (𝐿‘(denom‘𝑞))))))
5352ex 449 . . . . . . . 8 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ (ℤ ∖ {0}))) → (𝑒 = ⟨(𝑥 / 𝑦), ((𝐿𝑥) / (𝐿𝑦))⟩ → ∃𝑞𝑠(𝑒 = ⟨𝑞, 𝑠⟩ ∧ (𝑞 ∈ ℚ ∧ 𝑠 = ((𝐿‘(numer‘𝑞)) / (𝐿‘(denom‘𝑞)))))))
5453rexlimdvva 3067 . . . . . . 7 ((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) → (∃𝑥 ∈ ℤ ∃𝑦 ∈ (ℤ ∖ {0})𝑒 = ⟨(𝑥 / 𝑦), ((𝐿𝑥) / (𝐿𝑦))⟩ → ∃𝑞𝑠(𝑒 = ⟨𝑞, 𝑠⟩ ∧ (𝑞 ∈ ℚ ∧ 𝑠 = ((𝐿‘(numer‘𝑞)) / (𝐿‘(denom‘𝑞)))))))
5554imp 444 . . . . . 6 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ (ℤ ∖ {0})𝑒 = ⟨(𝑥 / 𝑦), ((𝐿𝑥) / (𝐿𝑦))⟩) → ∃𝑞𝑠(𝑒 = ⟨𝑞, 𝑠⟩ ∧ (𝑞 ∈ ℚ ∧ 𝑠 = ((𝐿‘(numer‘𝑞)) / (𝐿‘(denom‘𝑞))))))
56 19.42vv 1923 . . . . . . 7 (∃𝑞𝑠((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑒 = ⟨𝑞, 𝑠⟩ ∧ (𝑞 ∈ ℚ ∧ 𝑠 = ((𝐿‘(numer‘𝑞)) / (𝐿‘(denom‘𝑞)))))) ↔ ((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ ∃𝑞𝑠(𝑒 = ⟨𝑞, 𝑠⟩ ∧ (𝑞 ∈ ℚ ∧ 𝑠 = ((𝐿‘(numer‘𝑞)) / (𝐿‘(denom‘𝑞)))))))
57 simprrl 821 . . . . . . . . . 10 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑒 = ⟨𝑞, 𝑠⟩ ∧ (𝑞 ∈ ℚ ∧ 𝑠 = ((𝐿‘(numer‘𝑞)) / (𝐿‘(denom‘𝑞)))))) → 𝑞 ∈ ℚ)
58 qnumcl 15495 . . . . . . . . . 10 (𝑞 ∈ ℚ → (numer‘𝑞) ∈ ℤ)
5957, 58syl 17 . . . . . . . . 9 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑒 = ⟨𝑞, 𝑠⟩ ∧ (𝑞 ∈ ℚ ∧ 𝑠 = ((𝐿‘(numer‘𝑞)) / (𝐿‘(denom‘𝑞)))))) → (numer‘𝑞) ∈ ℤ)
60 qdencl 15496 . . . . . . . . . . . 12 (𝑞 ∈ ℚ → (denom‘𝑞) ∈ ℕ)
6157, 60syl 17 . . . . . . . . . . 11 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑒 = ⟨𝑞, 𝑠⟩ ∧ (𝑞 ∈ ℚ ∧ 𝑠 = ((𝐿‘(numer‘𝑞)) / (𝐿‘(denom‘𝑞)))))) → (denom‘𝑞) ∈ ℕ)
6261nnzd 11519 . . . . . . . . . 10 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑒 = ⟨𝑞, 𝑠⟩ ∧ (𝑞 ∈ ℚ ∧ 𝑠 = ((𝐿‘(numer‘𝑞)) / (𝐿‘(denom‘𝑞)))))) → (denom‘𝑞) ∈ ℤ)
63 nnne0 11091 . . . . . . . . . . 11 ((denom‘𝑞) ∈ ℕ → (denom‘𝑞) ≠ 0)
64 nelsn 4245 . . . . . . . . . . 11 ((denom‘𝑞) ≠ 0 → ¬ (denom‘𝑞) ∈ {0})
6561, 63, 643syl 18 . . . . . . . . . 10 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑒 = ⟨𝑞, 𝑠⟩ ∧ (𝑞 ∈ ℚ ∧ 𝑠 = ((𝐿‘(numer‘𝑞)) / (𝐿‘(denom‘𝑞)))))) → ¬ (denom‘𝑞) ∈ {0})
6662, 65eldifd 3618 . . . . . . . . 9 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑒 = ⟨𝑞, 𝑠⟩ ∧ (𝑞 ∈ ℚ ∧ 𝑠 = ((𝐿‘(numer‘𝑞)) / (𝐿‘(denom‘𝑞)))))) → (denom‘𝑞) ∈ (ℤ ∖ {0}))
67 simprl 809 . . . . . . . . . 10 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑒 = ⟨𝑞, 𝑠⟩ ∧ (𝑞 ∈ ℚ ∧ 𝑠 = ((𝐿‘(numer‘𝑞)) / (𝐿‘(denom‘𝑞)))))) → 𝑒 = ⟨𝑞, 𝑠⟩)
68 qeqnumdivden 15501 . . . . . . . . . . . 12 (𝑞 ∈ ℚ → 𝑞 = ((numer‘𝑞) / (denom‘𝑞)))
6957, 68syl 17 . . . . . . . . . . 11 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑒 = ⟨𝑞, 𝑠⟩ ∧ (𝑞 ∈ ℚ ∧ 𝑠 = ((𝐿‘(numer‘𝑞)) / (𝐿‘(denom‘𝑞)))))) → 𝑞 = ((numer‘𝑞) / (denom‘𝑞)))
70 simprrr 822 . . . . . . . . . . 11 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑒 = ⟨𝑞, 𝑠⟩ ∧ (𝑞 ∈ ℚ ∧ 𝑠 = ((𝐿‘(numer‘𝑞)) / (𝐿‘(denom‘𝑞)))))) → 𝑠 = ((𝐿‘(numer‘𝑞)) / (𝐿‘(denom‘𝑞))))
7169, 70opeq12d 4441 . . . . . . . . . 10 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑒 = ⟨𝑞, 𝑠⟩ ∧ (𝑞 ∈ ℚ ∧ 𝑠 = ((𝐿‘(numer‘𝑞)) / (𝐿‘(denom‘𝑞)))))) → ⟨𝑞, 𝑠⟩ = ⟨((numer‘𝑞) / (denom‘𝑞)), ((𝐿‘(numer‘𝑞)) / (𝐿‘(denom‘𝑞)))⟩)
7267, 71eqtrd 2685 . . . . . . . . 9 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑒 = ⟨𝑞, 𝑠⟩ ∧ (𝑞 ∈ ℚ ∧ 𝑠 = ((𝐿‘(numer‘𝑞)) / (𝐿‘(denom‘𝑞)))))) → 𝑒 = ⟨((numer‘𝑞) / (denom‘𝑞)), ((𝐿‘(numer‘𝑞)) / (𝐿‘(denom‘𝑞)))⟩)
73 oveq1 6697 . . . . . . . . . . . 12 (𝑥 = (numer‘𝑞) → (𝑥 / 𝑦) = ((numer‘𝑞) / 𝑦))
74 fveq2 6229 . . . . . . . . . . . . 13 (𝑥 = (numer‘𝑞) → (𝐿𝑥) = (𝐿‘(numer‘𝑞)))
7574oveq1d 6705 . . . . . . . . . . . 12 (𝑥 = (numer‘𝑞) → ((𝐿𝑥) / (𝐿𝑦)) = ((𝐿‘(numer‘𝑞)) / (𝐿𝑦)))
7673, 75opeq12d 4441 . . . . . . . . . . 11 (𝑥 = (numer‘𝑞) → ⟨(𝑥 / 𝑦), ((𝐿𝑥) / (𝐿𝑦))⟩ = ⟨((numer‘𝑞) / 𝑦), ((𝐿‘(numer‘𝑞)) / (𝐿𝑦))⟩)
7776eqeq2d 2661 . . . . . . . . . 10 (𝑥 = (numer‘𝑞) → (𝑒 = ⟨(𝑥 / 𝑦), ((𝐿𝑥) / (𝐿𝑦))⟩ ↔ 𝑒 = ⟨((numer‘𝑞) / 𝑦), ((𝐿‘(numer‘𝑞)) / (𝐿𝑦))⟩))
78 oveq2 6698 . . . . . . . . . . . 12 (𝑦 = (denom‘𝑞) → ((numer‘𝑞) / 𝑦) = ((numer‘𝑞) / (denom‘𝑞)))
79 fveq2 6229 . . . . . . . . . . . . 13 (𝑦 = (denom‘𝑞) → (𝐿𝑦) = (𝐿‘(denom‘𝑞)))
8079oveq2d 6706 . . . . . . . . . . . 12 (𝑦 = (denom‘𝑞) → ((𝐿‘(numer‘𝑞)) / (𝐿𝑦)) = ((𝐿‘(numer‘𝑞)) / (𝐿‘(denom‘𝑞))))
8178, 80opeq12d 4441 . . . . . . . . . . 11 (𝑦 = (denom‘𝑞) → ⟨((numer‘𝑞) / 𝑦), ((𝐿‘(numer‘𝑞)) / (𝐿𝑦))⟩ = ⟨((numer‘𝑞) / (denom‘𝑞)), ((𝐿‘(numer‘𝑞)) / (𝐿‘(denom‘𝑞)))⟩)
8281eqeq2d 2661 . . . . . . . . . 10 (𝑦 = (denom‘𝑞) → (𝑒 = ⟨((numer‘𝑞) / 𝑦), ((𝐿‘(numer‘𝑞)) / (𝐿𝑦))⟩ ↔ 𝑒 = ⟨((numer‘𝑞) / (denom‘𝑞)), ((𝐿‘(numer‘𝑞)) / (𝐿‘(denom‘𝑞)))⟩))
8377, 82rspc2ev 3355 . . . . . . . . 9 (((numer‘𝑞) ∈ ℤ ∧ (denom‘𝑞) ∈ (ℤ ∖ {0}) ∧ 𝑒 = ⟨((numer‘𝑞) / (denom‘𝑞)), ((𝐿‘(numer‘𝑞)) / (𝐿‘(denom‘𝑞)))⟩) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ (ℤ ∖ {0})𝑒 = ⟨(𝑥 / 𝑦), ((𝐿𝑥) / (𝐿𝑦))⟩)
8459, 66, 72, 83syl3anc 1366 . . . . . . . 8 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑒 = ⟨𝑞, 𝑠⟩ ∧ (𝑞 ∈ ℚ ∧ 𝑠 = ((𝐿‘(numer‘𝑞)) / (𝐿‘(denom‘𝑞)))))) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ (ℤ ∖ {0})𝑒 = ⟨(𝑥 / 𝑦), ((𝐿𝑥) / (𝐿𝑦))⟩)
8584exlimivv 1900 . . . . . . 7 (∃𝑞𝑠((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑒 = ⟨𝑞, 𝑠⟩ ∧ (𝑞 ∈ ℚ ∧ 𝑠 = ((𝐿‘(numer‘𝑞)) / (𝐿‘(denom‘𝑞)))))) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ (ℤ ∖ {0})𝑒 = ⟨(𝑥 / 𝑦), ((𝐿𝑥) / (𝐿𝑦))⟩)
8656, 85sylbir 225 . . . . . 6 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ ∃𝑞𝑠(𝑒 = ⟨𝑞, 𝑠⟩ ∧ (𝑞 ∈ ℚ ∧ 𝑠 = ((𝐿‘(numer‘𝑞)) / (𝐿‘(denom‘𝑞)))))) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ (ℤ ∖ {0})𝑒 = ⟨(𝑥 / 𝑦), ((𝐿𝑥) / (𝐿𝑦))⟩)
8755, 86impbida 895 . . . . 5 ((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) → (∃𝑥 ∈ ℤ ∃𝑦 ∈ (ℤ ∖ {0})𝑒 = ⟨(𝑥 / 𝑦), ((𝐿𝑥) / (𝐿𝑦))⟩ ↔ ∃𝑞𝑠(𝑒 = ⟨𝑞, 𝑠⟩ ∧ (𝑞 ∈ ℚ ∧ 𝑠 = ((𝐿‘(numer‘𝑞)) / (𝐿‘(denom‘𝑞)))))))
88 abid 2639 . . . . 5 (𝑒 ∈ {𝑒 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ (ℤ ∖ {0})𝑒 = ⟨(𝑥 / 𝑦), ((𝐿𝑥) / (𝐿𝑦))⟩} ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ (ℤ ∖ {0})𝑒 = ⟨(𝑥 / 𝑦), ((𝐿𝑥) / (𝐿𝑦))⟩)
89 elopab 5012 . . . . 5 (𝑒 ∈ {⟨𝑞, 𝑠⟩ ∣ (𝑞 ∈ ℚ ∧ 𝑠 = ((𝐿‘(numer‘𝑞)) / (𝐿‘(denom‘𝑞))))} ↔ ∃𝑞𝑠(𝑒 = ⟨𝑞, 𝑠⟩ ∧ (𝑞 ∈ ℚ ∧ 𝑠 = ((𝐿‘(numer‘𝑞)) / (𝐿‘(denom‘𝑞))))))
9087, 88, 893bitr4g 303 . . . 4 ((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) → (𝑒 ∈ {𝑒 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ (ℤ ∖ {0})𝑒 = ⟨(𝑥 / 𝑦), ((𝐿𝑥) / (𝐿𝑦))⟩} ↔ 𝑒 ∈ {⟨𝑞, 𝑠⟩ ∣ (𝑞 ∈ ℚ ∧ 𝑠 = ((𝐿‘(numer‘𝑞)) / (𝐿‘(denom‘𝑞))))}))
9115, 16, 17, 90eqrd 3655 . . 3 ((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) → {𝑒 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ (ℤ ∖ {0})𝑒 = ⟨(𝑥 / 𝑦), ((𝐿𝑥) / (𝐿𝑦))⟩} = {⟨𝑞, 𝑠⟩ ∣ (𝑞 ∈ ℚ ∧ 𝑠 = ((𝐿‘(numer‘𝑞)) / (𝐿‘(denom‘𝑞))))})
92 eqid 2651 . . . 4 (𝑥 ∈ ℤ, 𝑦 ∈ (ℤ ∖ {0}) ↦ ⟨(𝑥 / 𝑦), ((𝐿𝑥) / (𝐿𝑦))⟩) = (𝑥 ∈ ℤ, 𝑦 ∈ (ℤ ∖ {0}) ↦ ⟨(𝑥 / 𝑦), ((𝐿𝑥) / (𝐿𝑦))⟩)
9392rnmpt2 6812 . . 3 ran (𝑥 ∈ ℤ, 𝑦 ∈ (ℤ ∖ {0}) ↦ ⟨(𝑥 / 𝑦), ((𝐿𝑥) / (𝐿𝑦))⟩) = {𝑒 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ (ℤ ∖ {0})𝑒 = ⟨(𝑥 / 𝑦), ((𝐿𝑥) / (𝐿𝑦))⟩}
94 df-mpt 4763 . . 3 (𝑞 ∈ ℚ ↦ ((𝐿‘(numer‘𝑞)) / (𝐿‘(denom‘𝑞)))) = {⟨𝑞, 𝑠⟩ ∣ (𝑞 ∈ ℚ ∧ 𝑠 = ((𝐿‘(numer‘𝑞)) / (𝐿‘(denom‘𝑞))))}
9591, 93, 943eqtr4g 2710 . 2 ((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) → ran (𝑥 ∈ ℤ, 𝑦 ∈ (ℤ ∖ {0}) ↦ ⟨(𝑥 / 𝑦), ((𝐿𝑥) / (𝐿𝑦))⟩) = (𝑞 ∈ ℚ ↦ ((𝐿‘(numer‘𝑞)) / (𝐿‘(denom‘𝑞)))))
967, 14, 953eqtrd 2689 1 ((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) → (ℚHom‘𝑅) = (𝑞 ∈ ℚ ↦ ((𝐿‘(numer‘𝑞)) / (𝐿‘(denom‘𝑞)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 383  w3a 1054   = wceq 1523  wex 1744  wcel 2030  {cab 2637  wne 2823  wrex 2942  Vcvv 3231  cdif 3604  {csn 4210  cop 4216  {copab 4745  cmpt 4762  ccnv 5142  ran crn 5144  cima 5146  cfv 5926  (class class class)co 6690  cmpt2 6692  0cc0 9974   / cdiv 10722  cn 11058  cz 11415  cq 11826  numercnumer 15488  denomcdenom 15489  Basecbs 15904  0gc0g 16147  1rcur 18547  Unitcui 18685  /rcdvr 18728  DivRingcdr 18795  ℤRHomczrh 19896  chrcchr 19898  ℚHomcqqh 30144
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052  ax-addf 10053  ax-mulf 10054
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-tpos 7397  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-oadd 7609  df-er 7787  df-map 7901  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-sup 8389  df-inf 8390  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-4 11119  df-5 11120  df-6 11121  df-7 11122  df-8 11123  df-9 11124  df-n0 11331  df-z 11416  df-dec 11532  df-uz 11726  df-q 11827  df-rp 11871  df-fz 12365  df-fl 12633  df-mod 12709  df-seq 12842  df-exp 12901  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-dvds 15028  df-gcd 15264  df-numer 15490  df-denom 15491  df-gz 15681  df-struct 15906  df-ndx 15907  df-slot 15908  df-base 15910  df-sets 15911  df-ress 15912  df-plusg 16001  df-mulr 16002  df-starv 16003  df-tset 16007  df-ple 16008  df-ds 16011  df-unif 16012  df-0g 16149  df-mgm 17289  df-sgrp 17331  df-mnd 17342  df-mhm 17382  df-grp 17472  df-minusg 17473  df-sbg 17474  df-mulg 17588  df-subg 17638  df-ghm 17705  df-od 17994  df-cmn 18241  df-mgp 18536  df-ur 18548  df-ring 18595  df-cring 18596  df-oppr 18669  df-dvdsr 18687  df-unit 18688  df-invr 18718  df-dvr 18729  df-rnghom 18763  df-drng 18797  df-subrg 18826  df-cnfld 19795  df-zring 19867  df-zrh 19900  df-chr 19902  df-qqh 30145
This theorem is referenced by:  qqhvval  30155  qqhf  30158
  Copyright terms: Public domain W3C validator