Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  qqhre Structured version   Visualization version   GIF version

Theorem qqhre 30421
Description: The ℚHom homomorphism for the real number structure is the identity. (Contributed by Thierry Arnoux, 31-Oct-2017.)
Assertion
Ref Expression
qqhre (ℚHom‘ℝfld) = ( I ↾ ℚ)

Proof of Theorem qqhre
StepHypRef Expression
1 resubdrg 20191 . . . . . . 7 (ℝ ∈ (SubRing‘ℂfld) ∧ ℝfld ∈ DivRing)
21simpri 474 . . . . . 6 fld ∈ DivRing
3 drngring 18984 . . . . . . 7 (ℝfld ∈ DivRing → ℝfld ∈ Ring)
4 f1oi 6330 . . . . . . . . . . 11 ( I ↾ ℤ):ℤ–1-1-onto→ℤ
5 f1of1 6292 . . . . . . . . . . 11 (( I ↾ ℤ):ℤ–1-1-onto→ℤ → ( I ↾ ℤ):ℤ–1-1→ℤ)
64, 5ax-mp 5 . . . . . . . . . 10 ( I ↾ ℤ):ℤ–1-1→ℤ
7 zssre 11608 . . . . . . . . . 10 ℤ ⊆ ℝ
8 f1ss 6261 . . . . . . . . . 10 ((( I ↾ ℤ):ℤ–1-1→ℤ ∧ ℤ ⊆ ℝ) → ( I ↾ ℤ):ℤ–1-1→ℝ)
96, 7, 8mp2an 673 . . . . . . . . 9 ( I ↾ ℤ):ℤ–1-1→ℝ
10 zrhre 30420 . . . . . . . . . 10 (ℤRHom‘ℝfld) = ( I ↾ ℤ)
11 f1eq1 6251 . . . . . . . . . 10 ((ℤRHom‘ℝfld) = ( I ↾ ℤ) → ((ℤRHom‘ℝfld):ℤ–1-1→ℝ ↔ ( I ↾ ℤ):ℤ–1-1→ℝ))
1210, 11ax-mp 5 . . . . . . . . 9 ((ℤRHom‘ℝfld):ℤ–1-1→ℝ ↔ ( I ↾ ℤ):ℤ–1-1→ℝ)
139, 12mpbir 222 . . . . . . . 8 (ℤRHom‘ℝfld):ℤ–1-1→ℝ
14 rebase 20189 . . . . . . . . 9 ℝ = (Base‘ℝfld)
15 eqid 2774 . . . . . . . . 9 (ℤRHom‘ℝfld) = (ℤRHom‘ℝfld)
16 re0g 20195 . . . . . . . . 9 0 = (0g‘ℝfld)
1714, 15, 16zrhchr 30377 . . . . . . . 8 (ℝfld ∈ Ring → ((chr‘ℝfld) = 0 ↔ (ℤRHom‘ℝfld):ℤ–1-1→ℝ))
1813, 17mpbiri 249 . . . . . . 7 (ℝfld ∈ Ring → (chr‘ℝfld) = 0)
192, 3, 18mp2b 10 . . . . . 6 (chr‘ℝfld) = 0
20 eqid 2774 . . . . . . 7 (/r‘ℝfld) = (/r‘ℝfld)
2114, 20, 15qqhf 30387 . . . . . 6 ((ℝfld ∈ DivRing ∧ (chr‘ℝfld) = 0) → (ℚHom‘ℝfld):ℚ⟶ℝ)
222, 19, 21mp2an 673 . . . . 5 (ℚHom‘ℝfld):ℚ⟶ℝ
2322a1i 11 . . . 4 (⊤ → (ℚHom‘ℝfld):ℚ⟶ℝ)
2423feqmptd 6408 . . 3 (⊤ → (ℚHom‘ℝfld) = (𝑞 ∈ ℚ ↦ ((ℚHom‘ℝfld)‘𝑞)))
2524trud 1644 . 2 (ℚHom‘ℝfld) = (𝑞 ∈ ℚ ↦ ((ℚHom‘ℝfld)‘𝑞))
2614, 20, 15qqhvval 30384 . . . . 5 (((ℝfld ∈ DivRing ∧ (chr‘ℝfld) = 0) ∧ 𝑞 ∈ ℚ) → ((ℚHom‘ℝfld)‘𝑞) = (((ℤRHom‘ℝfld)‘(numer‘𝑞))(/r‘ℝfld)((ℤRHom‘ℝfld)‘(denom‘𝑞))))
272, 19, 26mpanl12 683 . . . 4 (𝑞 ∈ ℚ → ((ℚHom‘ℝfld)‘𝑞) = (((ℤRHom‘ℝfld)‘(numer‘𝑞))(/r‘ℝfld)((ℤRHom‘ℝfld)‘(denom‘𝑞))))
28 f1f 6256 . . . . . . . 8 ((ℤRHom‘ℝfld):ℤ–1-1→ℝ → (ℤRHom‘ℝfld):ℤ⟶ℝ)
2913, 28ax-mp 5 . . . . . . 7 (ℤRHom‘ℝfld):ℤ⟶ℝ
3029a1i 11 . . . . . 6 (𝑞 ∈ ℚ → (ℤRHom‘ℝfld):ℤ⟶ℝ)
31 qnumcl 15675 . . . . . 6 (𝑞 ∈ ℚ → (numer‘𝑞) ∈ ℤ)
3230, 31ffvelrnd 6520 . . . . 5 (𝑞 ∈ ℚ → ((ℤRHom‘ℝfld)‘(numer‘𝑞)) ∈ ℝ)
33 qdencl 15676 . . . . . . 7 (𝑞 ∈ ℚ → (denom‘𝑞) ∈ ℕ)
3433nnzd 11705 . . . . . 6 (𝑞 ∈ ℚ → (denom‘𝑞) ∈ ℤ)
3530, 34ffvelrnd 6520 . . . . 5 (𝑞 ∈ ℚ → ((ℤRHom‘ℝfld)‘(denom‘𝑞)) ∈ ℝ)
3634anim1i 603 . . . . . . . 8 ((𝑞 ∈ ℚ ∧ ((ℤRHom‘ℝfld)‘(denom‘𝑞)) = 0) → ((denom‘𝑞) ∈ ℤ ∧ ((ℤRHom‘ℝfld)‘(denom‘𝑞)) = 0))
3714, 15, 16zrhf1ker 30376 . . . . . . . . . . . 12 (ℝfld ∈ Ring → ((ℤRHom‘ℝfld):ℤ–1-1→ℝ ↔ ((ℤRHom‘ℝfld) “ {0}) = {0}))
382, 3, 37mp2b 10 . . . . . . . . . . 11 ((ℤRHom‘ℝfld):ℤ–1-1→ℝ ↔ ((ℤRHom‘ℝfld) “ {0}) = {0})
3913, 38mpbi 221 . . . . . . . . . 10 ((ℤRHom‘ℝfld) “ {0}) = {0}
4039eleq2i 2845 . . . . . . . . 9 ((denom‘𝑞) ∈ ((ℤRHom‘ℝfld) “ {0}) ↔ (denom‘𝑞) ∈ {0})
41 ffn 6196 . . . . . . . . . 10 ((ℤRHom‘ℝfld):ℤ⟶ℝ → (ℤRHom‘ℝfld) Fn ℤ)
42 fniniseg 6498 . . . . . . . . . 10 ((ℤRHom‘ℝfld) Fn ℤ → ((denom‘𝑞) ∈ ((ℤRHom‘ℝfld) “ {0}) ↔ ((denom‘𝑞) ∈ ℤ ∧ ((ℤRHom‘ℝfld)‘(denom‘𝑞)) = 0)))
4329, 41, 42mp2b 10 . . . . . . . . 9 ((denom‘𝑞) ∈ ((ℤRHom‘ℝfld) “ {0}) ↔ ((denom‘𝑞) ∈ ℤ ∧ ((ℤRHom‘ℝfld)‘(denom‘𝑞)) = 0))
44 fvex 6359 . . . . . . . . . 10 (denom‘𝑞) ∈ V
4544elsn 4341 . . . . . . . . 9 ((denom‘𝑞) ∈ {0} ↔ (denom‘𝑞) = 0)
4640, 43, 453bitr3ri 292 . . . . . . . 8 ((denom‘𝑞) = 0 ↔ ((denom‘𝑞) ∈ ℤ ∧ ((ℤRHom‘ℝfld)‘(denom‘𝑞)) = 0))
4736, 46sylibr 225 . . . . . . 7 ((𝑞 ∈ ℚ ∧ ((ℤRHom‘ℝfld)‘(denom‘𝑞)) = 0) → (denom‘𝑞) = 0)
4833nnne0d 11288 . . . . . . . . 9 (𝑞 ∈ ℚ → (denom‘𝑞) ≠ 0)
4948adantr 467 . . . . . . . 8 ((𝑞 ∈ ℚ ∧ ((ℤRHom‘ℝfld)‘(denom‘𝑞)) = 0) → (denom‘𝑞) ≠ 0)
5049neneqd 2951 . . . . . . 7 ((𝑞 ∈ ℚ ∧ ((ℤRHom‘ℝfld)‘(denom‘𝑞)) = 0) → ¬ (denom‘𝑞) = 0)
5147, 50pm2.65da 840 . . . . . 6 (𝑞 ∈ ℚ → ¬ ((ℤRHom‘ℝfld)‘(denom‘𝑞)) = 0)
5251neqned 2953 . . . . 5 (𝑞 ∈ ℚ → ((ℤRHom‘ℝfld)‘(denom‘𝑞)) ≠ 0)
53 redvr 20200 . . . . 5 ((((ℤRHom‘ℝfld)‘(numer‘𝑞)) ∈ ℝ ∧ ((ℤRHom‘ℝfld)‘(denom‘𝑞)) ∈ ℝ ∧ ((ℤRHom‘ℝfld)‘(denom‘𝑞)) ≠ 0) → (((ℤRHom‘ℝfld)‘(numer‘𝑞))(/r‘ℝfld)((ℤRHom‘ℝfld)‘(denom‘𝑞))) = (((ℤRHom‘ℝfld)‘(numer‘𝑞)) / ((ℤRHom‘ℝfld)‘(denom‘𝑞))))
5432, 35, 52, 53syl3anc 1480 . . . 4 (𝑞 ∈ ℚ → (((ℤRHom‘ℝfld)‘(numer‘𝑞))(/r‘ℝfld)((ℤRHom‘ℝfld)‘(denom‘𝑞))) = (((ℤRHom‘ℝfld)‘(numer‘𝑞)) / ((ℤRHom‘ℝfld)‘(denom‘𝑞))))
5510fveq1i 6349 . . . . . . . 8 ((ℤRHom‘ℝfld)‘(numer‘𝑞)) = (( I ↾ ℤ)‘(numer‘𝑞))
56 fvresi 6602 . . . . . . . 8 ((numer‘𝑞) ∈ ℤ → (( I ↾ ℤ)‘(numer‘𝑞)) = (numer‘𝑞))
5755, 56syl5eq 2820 . . . . . . 7 ((numer‘𝑞) ∈ ℤ → ((ℤRHom‘ℝfld)‘(numer‘𝑞)) = (numer‘𝑞))
5831, 57syl 17 . . . . . 6 (𝑞 ∈ ℚ → ((ℤRHom‘ℝfld)‘(numer‘𝑞)) = (numer‘𝑞))
5910fveq1i 6349 . . . . . . . 8 ((ℤRHom‘ℝfld)‘(denom‘𝑞)) = (( I ↾ ℤ)‘(denom‘𝑞))
60 fvresi 6602 . . . . . . . 8 ((denom‘𝑞) ∈ ℤ → (( I ↾ ℤ)‘(denom‘𝑞)) = (denom‘𝑞))
6159, 60syl5eq 2820 . . . . . . 7 ((denom‘𝑞) ∈ ℤ → ((ℤRHom‘ℝfld)‘(denom‘𝑞)) = (denom‘𝑞))
6234, 61syl 17 . . . . . 6 (𝑞 ∈ ℚ → ((ℤRHom‘ℝfld)‘(denom‘𝑞)) = (denom‘𝑞))
6358, 62oveq12d 6830 . . . . 5 (𝑞 ∈ ℚ → (((ℤRHom‘ℝfld)‘(numer‘𝑞)) / ((ℤRHom‘ℝfld)‘(denom‘𝑞))) = ((numer‘𝑞) / (denom‘𝑞)))
64 qeqnumdivden 15681 . . . . 5 (𝑞 ∈ ℚ → 𝑞 = ((numer‘𝑞) / (denom‘𝑞)))
6563, 64eqtr4d 2811 . . . 4 (𝑞 ∈ ℚ → (((ℤRHom‘ℝfld)‘(numer‘𝑞)) / ((ℤRHom‘ℝfld)‘(denom‘𝑞))) = 𝑞)
6627, 54, 653eqtrd 2812 . . 3 (𝑞 ∈ ℚ → ((ℚHom‘ℝfld)‘𝑞) = 𝑞)
6766mpteq2ia 4887 . 2 (𝑞 ∈ ℚ ↦ ((ℚHom‘ℝfld)‘𝑞)) = (𝑞 ∈ ℚ ↦ 𝑞)
68 mptresid 5608 . 2 (𝑞 ∈ ℚ ↦ 𝑞) = ( I ↾ ℚ)
6925, 67, 683eqtri 2800 1 (ℚHom‘ℝfld) = ( I ↾ ℚ)
Colors of variables: wff setvar class
Syntax hints:  wb 197  wa 383   = wceq 1634  wtru 1635  wcel 2148  wne 2946  wss 3729  {csn 4326  cmpt 4876   I cid 5170  ccnv 5262  cres 5265  cima 5266   Fn wfn 6037  wf 6038  1-1wf1 6039  1-1-ontowf1o 6041  cfv 6042  (class class class)co 6812  cr 10158  0cc0 10159   / cdiv 10907  cz 11601  cq 12013  numercnumer 15668  denomcdenom 15669  Ringcrg 18775  /rcdvr 18910  DivRingcdr 18977  SubRingcsubrg 19006  fldccnfld 19981  ℤRHomczrh 20083  chrcchr 20085  fldcrefld 20187  ℚHomcqqh 30373
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1873  ax-4 1888  ax-5 1994  ax-6 2060  ax-7 2096  ax-8 2150  ax-9 2157  ax-10 2177  ax-11 2193  ax-12 2206  ax-13 2411  ax-ext 2754  ax-rep 4917  ax-sep 4928  ax-nul 4936  ax-pow 4988  ax-pr 5048  ax-un 7117  ax-inf2 8723  ax-cnex 10215  ax-resscn 10216  ax-1cn 10217  ax-icn 10218  ax-addcl 10219  ax-addrcl 10220  ax-mulcl 10221  ax-mulrcl 10222  ax-mulcom 10223  ax-addass 10224  ax-mulass 10225  ax-distr 10226  ax-i2m1 10227  ax-1ne0 10228  ax-1rid 10229  ax-rnegex 10230  ax-rrecex 10231  ax-cnre 10232  ax-pre-lttri 10233  ax-pre-lttrn 10234  ax-pre-ltadd 10235  ax-pre-mulgt0 10236  ax-pre-sup 10237  ax-addf 10238  ax-mulf 10239
This theorem depends on definitions:  df-bi 198  df-an 384  df-or 864  df-3or 1099  df-3an 1100  df-tru 1637  df-ex 1856  df-nf 1861  df-sb 2053  df-eu 2625  df-mo 2626  df-clab 2761  df-cleq 2767  df-clel 2770  df-nfc 2905  df-ne 2947  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3071  df-rmo 3072  df-rab 3073  df-v 3357  df-sbc 3594  df-csb 3689  df-dif 3732  df-un 3734  df-in 3736  df-ss 3743  df-pss 3745  df-nul 4074  df-if 4236  df-pw 4309  df-sn 4327  df-pr 4329  df-tp 4331  df-op 4333  df-uni 4586  df-int 4623  df-iun 4667  df-br 4798  df-opab 4860  df-mpt 4877  df-tr 4900  df-id 5171  df-eprel 5176  df-po 5184  df-so 5185  df-fr 5222  df-we 5224  df-xp 5269  df-rel 5270  df-cnv 5271  df-co 5272  df-dm 5273  df-rn 5274  df-res 5275  df-ima 5276  df-pred 5834  df-ord 5880  df-on 5881  df-lim 5882  df-suc 5883  df-iota 6005  df-fun 6044  df-fn 6045  df-f 6046  df-f1 6047  df-fo 6048  df-f1o 6049  df-fv 6050  df-riota 6773  df-ov 6815  df-oprab 6816  df-mpt2 6817  df-om 7234  df-1st 7336  df-2nd 7337  df-tpos 7525  df-wrecs 7580  df-recs 7642  df-rdg 7680  df-1o 7734  df-oadd 7738  df-er 7917  df-map 8032  df-en 8131  df-dom 8132  df-sdom 8133  df-fin 8134  df-sup 8525  df-inf 8526  df-pnf 10299  df-mnf 10300  df-xr 10301  df-ltxr 10302  df-le 10303  df-sub 10491  df-neg 10492  df-div 10908  df-nn 11244  df-2 11302  df-3 11303  df-4 11304  df-5 11305  df-6 11306  df-7 11307  df-8 11308  df-9 11309  df-n0 11517  df-z 11602  df-dec 11718  df-uz 11911  df-q 12014  df-rp 12053  df-fz 12556  df-fl 12823  df-mod 12899  df-seq 13031  df-exp 13090  df-cj 14069  df-re 14070  df-im 14071  df-sqrt 14205  df-abs 14206  df-dvds 15212  df-gcd 15446  df-numer 15670  df-denom 15671  df-gz 15861  df-struct 16086  df-ndx 16087  df-slot 16088  df-base 16090  df-sets 16091  df-ress 16092  df-plusg 16182  df-mulr 16183  df-starv 16184  df-tset 16188  df-ple 16189  df-ds 16192  df-unif 16193  df-0g 16330  df-mgm 17470  df-sgrp 17512  df-mnd 17523  df-mhm 17563  df-grp 17653  df-minusg 17654  df-sbg 17655  df-mulg 17769  df-subg 17819  df-ghm 17886  df-od 18175  df-cmn 18422  df-mgp 18718  df-ur 18730  df-ring 18777  df-cring 18778  df-oppr 18851  df-dvdsr 18869  df-unit 18870  df-invr 18900  df-dvr 18911  df-rnghom 18945  df-drng 18979  df-subrg 19008  df-cnfld 19982  df-zring 20054  df-zrh 20087  df-chr 20089  df-refld 20188  df-qqh 30374
This theorem is referenced by:  rrhre  30422
  Copyright terms: Public domain W3C validator