Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  qqhghm Structured version   Visualization version   GIF version

Theorem qqhghm 30363
Description: The ℚHom homomorphism is a group homomorphism if the target structure is a division ring. (Contributed by Thierry Arnoux, 9-Nov-2017.)
Hypotheses
Ref Expression
qqhval2.0 𝐵 = (Base‘𝑅)
qqhval2.1 / = (/r𝑅)
qqhval2.2 𝐿 = (ℤRHom‘𝑅)
qqhrhm.1 𝑄 = (ℂflds ℚ)
Assertion
Ref Expression
qqhghm ((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) → (ℚHom‘𝑅) ∈ (𝑄 GrpHom 𝑅))

Proof of Theorem qqhghm
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 qqhrhm.1 . . 3 𝑄 = (ℂflds ℚ)
21qrngbas 25529 . 2 ℚ = (Base‘𝑄)
3 qqhval2.0 . 2 𝐵 = (Base‘𝑅)
4 qex 12014 . . 3 ℚ ∈ V
5 cnfldadd 19974 . . . 4 + = (+g‘ℂfld)
61, 5ressplusg 16216 . . 3 (ℚ ∈ V → + = (+g𝑄))
74, 6ax-mp 5 . 2 + = (+g𝑄)
8 eqid 2761 . 2 (+g𝑅) = (+g𝑅)
91qdrng 25530 . . 3 𝑄 ∈ DivRing
10 drnggrp 18978 . . 3 (𝑄 ∈ DivRing → 𝑄 ∈ Grp)
119, 10mp1i 13 . 2 ((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) → 𝑄 ∈ Grp)
12 drnggrp 18978 . . 3 (𝑅 ∈ DivRing → 𝑅 ∈ Grp)
1312adantr 472 . 2 ((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) → 𝑅 ∈ Grp)
14 qqhval2.1 . . 3 / = (/r𝑅)
15 qqhval2.2 . . 3 𝐿 = (ℤRHom‘𝑅)
163, 14, 15qqhf 30361 . 2 ((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) → (ℚHom‘𝑅):ℚ⟶𝐵)
17 drngring 18977 . . . . 5 (𝑅 ∈ DivRing → 𝑅 ∈ Ring)
1817ad2antrr 764 . . . 4 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → 𝑅 ∈ Ring)
1917adantr 472 . . . . . . 7 ((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) → 𝑅 ∈ Ring)
2015zrhrhm 20083 . . . . . . 7 (𝑅 ∈ Ring → 𝐿 ∈ (ℤring RingHom 𝑅))
21 zringbas 20047 . . . . . . . 8 ℤ = (Base‘ℤring)
2221, 3rhmf 18949 . . . . . . 7 (𝐿 ∈ (ℤring RingHom 𝑅) → 𝐿:ℤ⟶𝐵)
2319, 20, 223syl 18 . . . . . 6 ((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) → 𝐿:ℤ⟶𝐵)
2423adantr 472 . . . . 5 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → 𝐿:ℤ⟶𝐵)
25 qnumcl 15671 . . . . . . 7 (𝑥 ∈ ℚ → (numer‘𝑥) ∈ ℤ)
2625ad2antrl 766 . . . . . 6 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → (numer‘𝑥) ∈ ℤ)
27 qdencl 15672 . . . . . . . 8 (𝑦 ∈ ℚ → (denom‘𝑦) ∈ ℕ)
2827ad2antll 767 . . . . . . 7 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → (denom‘𝑦) ∈ ℕ)
2928nnzd 11694 . . . . . 6 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → (denom‘𝑦) ∈ ℤ)
3026, 29zmulcld 11701 . . . . 5 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → ((numer‘𝑥) · (denom‘𝑦)) ∈ ℤ)
3124, 30ffvelrnd 6525 . . . 4 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → (𝐿‘((numer‘𝑥) · (denom‘𝑦))) ∈ 𝐵)
32 qnumcl 15671 . . . . . . 7 (𝑦 ∈ ℚ → (numer‘𝑦) ∈ ℤ)
3332ad2antll 767 . . . . . 6 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → (numer‘𝑦) ∈ ℤ)
34 qdencl 15672 . . . . . . . 8 (𝑥 ∈ ℚ → (denom‘𝑥) ∈ ℕ)
3534ad2antrl 766 . . . . . . 7 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → (denom‘𝑥) ∈ ℕ)
3635nnzd 11694 . . . . . 6 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → (denom‘𝑥) ∈ ℤ)
3733, 36zmulcld 11701 . . . . 5 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → ((numer‘𝑦) · (denom‘𝑥)) ∈ ℤ)
3824, 37ffvelrnd 6525 . . . 4 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → (𝐿‘((numer‘𝑦) · (denom‘𝑥))) ∈ 𝐵)
3918, 20syl 17 . . . . . 6 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → 𝐿 ∈ (ℤring RingHom 𝑅))
40 zringmulr 20050 . . . . . . 7 · = (.r‘ℤring)
41 eqid 2761 . . . . . . 7 (.r𝑅) = (.r𝑅)
4221, 40, 41rhmmul 18950 . . . . . 6 ((𝐿 ∈ (ℤring RingHom 𝑅) ∧ (denom‘𝑥) ∈ ℤ ∧ (denom‘𝑦) ∈ ℤ) → (𝐿‘((denom‘𝑥) · (denom‘𝑦))) = ((𝐿‘(denom‘𝑥))(.r𝑅)(𝐿‘(denom‘𝑦))))
4339, 36, 29, 42syl3anc 1477 . . . . 5 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → (𝐿‘((denom‘𝑥) · (denom‘𝑦))) = ((𝐿‘(denom‘𝑥))(.r𝑅)(𝐿‘(denom‘𝑦))))
44 simpl 474 . . . . . . 7 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → (𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0))
4535nnne0d 11278 . . . . . . 7 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → (denom‘𝑥) ≠ 0)
46 eqid 2761 . . . . . . . 8 (0g𝑅) = (0g𝑅)
473, 15, 46elzrhunit 30354 . . . . . . 7 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ ((denom‘𝑥) ∈ ℤ ∧ (denom‘𝑥) ≠ 0)) → (𝐿‘(denom‘𝑥)) ∈ (Unit‘𝑅))
4844, 36, 45, 47syl12anc 1475 . . . . . 6 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → (𝐿‘(denom‘𝑥)) ∈ (Unit‘𝑅))
4928nnne0d 11278 . . . . . . 7 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → (denom‘𝑦) ≠ 0)
503, 15, 46elzrhunit 30354 . . . . . . 7 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ ((denom‘𝑦) ∈ ℤ ∧ (denom‘𝑦) ≠ 0)) → (𝐿‘(denom‘𝑦)) ∈ (Unit‘𝑅))
5144, 29, 49, 50syl12anc 1475 . . . . . 6 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → (𝐿‘(denom‘𝑦)) ∈ (Unit‘𝑅))
52 eqid 2761 . . . . . . 7 (Unit‘𝑅) = (Unit‘𝑅)
5352, 41unitmulcl 18885 . . . . . 6 ((𝑅 ∈ Ring ∧ (𝐿‘(denom‘𝑥)) ∈ (Unit‘𝑅) ∧ (𝐿‘(denom‘𝑦)) ∈ (Unit‘𝑅)) → ((𝐿‘(denom‘𝑥))(.r𝑅)(𝐿‘(denom‘𝑦))) ∈ (Unit‘𝑅))
5418, 48, 51, 53syl3anc 1477 . . . . 5 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → ((𝐿‘(denom‘𝑥))(.r𝑅)(𝐿‘(denom‘𝑦))) ∈ (Unit‘𝑅))
5543, 54eqeltrd 2840 . . . 4 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → (𝐿‘((denom‘𝑥) · (denom‘𝑦))) ∈ (Unit‘𝑅))
563, 52, 8, 14dvrdir 30121 . . . 4 ((𝑅 ∈ Ring ∧ ((𝐿‘((numer‘𝑥) · (denom‘𝑦))) ∈ 𝐵 ∧ (𝐿‘((numer‘𝑦) · (denom‘𝑥))) ∈ 𝐵 ∧ (𝐿‘((denom‘𝑥) · (denom‘𝑦))) ∈ (Unit‘𝑅))) → (((𝐿‘((numer‘𝑥) · (denom‘𝑦)))(+g𝑅)(𝐿‘((numer‘𝑦) · (denom‘𝑥)))) / (𝐿‘((denom‘𝑥) · (denom‘𝑦)))) = (((𝐿‘((numer‘𝑥) · (denom‘𝑦))) / (𝐿‘((denom‘𝑥) · (denom‘𝑦))))(+g𝑅)((𝐿‘((numer‘𝑦) · (denom‘𝑥))) / (𝐿‘((denom‘𝑥) · (denom‘𝑦))))))
5718, 31, 38, 55, 56syl13anc 1479 . . 3 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → (((𝐿‘((numer‘𝑥) · (denom‘𝑦)))(+g𝑅)(𝐿‘((numer‘𝑦) · (denom‘𝑥)))) / (𝐿‘((denom‘𝑥) · (denom‘𝑦)))) = (((𝐿‘((numer‘𝑥) · (denom‘𝑦))) / (𝐿‘((denom‘𝑥) · (denom‘𝑦))))(+g𝑅)((𝐿‘((numer‘𝑦) · (denom‘𝑥))) / (𝐿‘((denom‘𝑥) · (denom‘𝑦))))))
58 qeqnumdivden 15677 . . . . . . . 8 (𝑥 ∈ ℚ → 𝑥 = ((numer‘𝑥) / (denom‘𝑥)))
5958ad2antrl 766 . . . . . . 7 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → 𝑥 = ((numer‘𝑥) / (denom‘𝑥)))
60 qeqnumdivden 15677 . . . . . . . 8 (𝑦 ∈ ℚ → 𝑦 = ((numer‘𝑦) / (denom‘𝑦)))
6160ad2antll 767 . . . . . . 7 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → 𝑦 = ((numer‘𝑦) / (denom‘𝑦)))
6259, 61oveq12d 6833 . . . . . 6 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → (𝑥 + 𝑦) = (((numer‘𝑥) / (denom‘𝑥)) + ((numer‘𝑦) / (denom‘𝑦))))
6326zcnd 11696 . . . . . . 7 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → (numer‘𝑥) ∈ ℂ)
6436zcnd 11696 . . . . . . 7 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → (denom‘𝑥) ∈ ℂ)
6533zcnd 11696 . . . . . . 7 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → (numer‘𝑦) ∈ ℂ)
6629zcnd 11696 . . . . . . 7 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → (denom‘𝑦) ∈ ℂ)
6763, 64, 65, 66, 45, 49divadddivd 11058 . . . . . 6 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → (((numer‘𝑥) / (denom‘𝑥)) + ((numer‘𝑦) / (denom‘𝑦))) = ((((numer‘𝑥) · (denom‘𝑦)) + ((numer‘𝑦) · (denom‘𝑥))) / ((denom‘𝑥) · (denom‘𝑦))))
6862, 67eqtrd 2795 . . . . 5 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → (𝑥 + 𝑦) = ((((numer‘𝑥) · (denom‘𝑦)) + ((numer‘𝑦) · (denom‘𝑥))) / ((denom‘𝑥) · (denom‘𝑦))))
6968fveq2d 6358 . . . 4 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → ((ℚHom‘𝑅)‘(𝑥 + 𝑦)) = ((ℚHom‘𝑅)‘((((numer‘𝑥) · (denom‘𝑦)) + ((numer‘𝑦) · (denom‘𝑥))) / ((denom‘𝑥) · (denom‘𝑦)))))
7030, 37zaddcld 11699 . . . . 5 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → (((numer‘𝑥) · (denom‘𝑦)) + ((numer‘𝑦) · (denom‘𝑥))) ∈ ℤ)
7136, 29zmulcld 11701 . . . . 5 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → ((denom‘𝑥) · (denom‘𝑦)) ∈ ℤ)
7264, 66, 45, 49mulne0d 10892 . . . . 5 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → ((denom‘𝑥) · (denom‘𝑦)) ≠ 0)
733, 14, 15qqhvq 30362 . . . . 5 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ ((((numer‘𝑥) · (denom‘𝑦)) + ((numer‘𝑦) · (denom‘𝑥))) ∈ ℤ ∧ ((denom‘𝑥) · (denom‘𝑦)) ∈ ℤ ∧ ((denom‘𝑥) · (denom‘𝑦)) ≠ 0)) → ((ℚHom‘𝑅)‘((((numer‘𝑥) · (denom‘𝑦)) + ((numer‘𝑦) · (denom‘𝑥))) / ((denom‘𝑥) · (denom‘𝑦)))) = ((𝐿‘(((numer‘𝑥) · (denom‘𝑦)) + ((numer‘𝑦) · (denom‘𝑥)))) / (𝐿‘((denom‘𝑥) · (denom‘𝑦)))))
7444, 70, 71, 72, 73syl13anc 1479 . . . 4 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → ((ℚHom‘𝑅)‘((((numer‘𝑥) · (denom‘𝑦)) + ((numer‘𝑦) · (denom‘𝑥))) / ((denom‘𝑥) · (denom‘𝑦)))) = ((𝐿‘(((numer‘𝑥) · (denom‘𝑦)) + ((numer‘𝑦) · (denom‘𝑥)))) / (𝐿‘((denom‘𝑥) · (denom‘𝑦)))))
75 rhmghm 18948 . . . . . 6 (𝐿 ∈ (ℤring RingHom 𝑅) → 𝐿 ∈ (ℤring GrpHom 𝑅))
7639, 75syl 17 . . . . 5 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → 𝐿 ∈ (ℤring GrpHom 𝑅))
77 zringplusg 20048 . . . . . . 7 + = (+g‘ℤring)
7821, 77, 8ghmlin 17887 . . . . . 6 ((𝐿 ∈ (ℤring GrpHom 𝑅) ∧ ((numer‘𝑥) · (denom‘𝑦)) ∈ ℤ ∧ ((numer‘𝑦) · (denom‘𝑥)) ∈ ℤ) → (𝐿‘(((numer‘𝑥) · (denom‘𝑦)) + ((numer‘𝑦) · (denom‘𝑥)))) = ((𝐿‘((numer‘𝑥) · (denom‘𝑦)))(+g𝑅)(𝐿‘((numer‘𝑦) · (denom‘𝑥)))))
7978oveq1d 6830 . . . . 5 ((𝐿 ∈ (ℤring GrpHom 𝑅) ∧ ((numer‘𝑥) · (denom‘𝑦)) ∈ ℤ ∧ ((numer‘𝑦) · (denom‘𝑥)) ∈ ℤ) → ((𝐿‘(((numer‘𝑥) · (denom‘𝑦)) + ((numer‘𝑦) · (denom‘𝑥)))) / (𝐿‘((denom‘𝑥) · (denom‘𝑦)))) = (((𝐿‘((numer‘𝑥) · (denom‘𝑦)))(+g𝑅)(𝐿‘((numer‘𝑦) · (denom‘𝑥)))) / (𝐿‘((denom‘𝑥) · (denom‘𝑦)))))
8076, 30, 37, 79syl3anc 1477 . . . 4 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → ((𝐿‘(((numer‘𝑥) · (denom‘𝑦)) + ((numer‘𝑦) · (denom‘𝑥)))) / (𝐿‘((denom‘𝑥) · (denom‘𝑦)))) = (((𝐿‘((numer‘𝑥) · (denom‘𝑦)))(+g𝑅)(𝐿‘((numer‘𝑦) · (denom‘𝑥)))) / (𝐿‘((denom‘𝑥) · (denom‘𝑦)))))
8169, 74, 803eqtrd 2799 . . 3 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → ((ℚHom‘𝑅)‘(𝑥 + 𝑦)) = (((𝐿‘((numer‘𝑥) · (denom‘𝑦)))(+g𝑅)(𝐿‘((numer‘𝑦) · (denom‘𝑥)))) / (𝐿‘((denom‘𝑥) · (denom‘𝑦)))))
8258fveq2d 6358 . . . . . 6 (𝑥 ∈ ℚ → ((ℚHom‘𝑅)‘𝑥) = ((ℚHom‘𝑅)‘((numer‘𝑥) / (denom‘𝑥))))
8382ad2antrl 766 . . . . 5 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → ((ℚHom‘𝑅)‘𝑥) = ((ℚHom‘𝑅)‘((numer‘𝑥) / (denom‘𝑥))))
843, 14, 15qqhvq 30362 . . . . . 6 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ ((numer‘𝑥) ∈ ℤ ∧ (denom‘𝑥) ∈ ℤ ∧ (denom‘𝑥) ≠ 0)) → ((ℚHom‘𝑅)‘((numer‘𝑥) / (denom‘𝑥))) = ((𝐿‘(numer‘𝑥)) / (𝐿‘(denom‘𝑥))))
8544, 26, 36, 45, 84syl13anc 1479 . . . . 5 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → ((ℚHom‘𝑅)‘((numer‘𝑥) / (denom‘𝑥))) = ((𝐿‘(numer‘𝑥)) / (𝐿‘(denom‘𝑥))))
8652, 21, 14, 40rhmdvd 30152 . . . . . 6 ((𝐿 ∈ (ℤring RingHom 𝑅) ∧ ((numer‘𝑥) ∈ ℤ ∧ (denom‘𝑥) ∈ ℤ ∧ (denom‘𝑦) ∈ ℤ) ∧ ((𝐿‘(denom‘𝑥)) ∈ (Unit‘𝑅) ∧ (𝐿‘(denom‘𝑦)) ∈ (Unit‘𝑅))) → ((𝐿‘(numer‘𝑥)) / (𝐿‘(denom‘𝑥))) = ((𝐿‘((numer‘𝑥) · (denom‘𝑦))) / (𝐿‘((denom‘𝑥) · (denom‘𝑦)))))
8739, 26, 36, 29, 48, 51, 86syl132anc 1495 . . . . 5 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → ((𝐿‘(numer‘𝑥)) / (𝐿‘(denom‘𝑥))) = ((𝐿‘((numer‘𝑥) · (denom‘𝑦))) / (𝐿‘((denom‘𝑥) · (denom‘𝑦)))))
8883, 85, 873eqtrd 2799 . . . 4 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → ((ℚHom‘𝑅)‘𝑥) = ((𝐿‘((numer‘𝑥) · (denom‘𝑦))) / (𝐿‘((denom‘𝑥) · (denom‘𝑦)))))
8960fveq2d 6358 . . . . . 6 (𝑦 ∈ ℚ → ((ℚHom‘𝑅)‘𝑦) = ((ℚHom‘𝑅)‘((numer‘𝑦) / (denom‘𝑦))))
9089ad2antll 767 . . . . 5 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → ((ℚHom‘𝑅)‘𝑦) = ((ℚHom‘𝑅)‘((numer‘𝑦) / (denom‘𝑦))))
9152, 21, 14, 40rhmdvd 30152 . . . . . . 7 ((𝐿 ∈ (ℤring RingHom 𝑅) ∧ ((numer‘𝑦) ∈ ℤ ∧ (denom‘𝑦) ∈ ℤ ∧ (denom‘𝑥) ∈ ℤ) ∧ ((𝐿‘(denom‘𝑦)) ∈ (Unit‘𝑅) ∧ (𝐿‘(denom‘𝑥)) ∈ (Unit‘𝑅))) → ((𝐿‘(numer‘𝑦)) / (𝐿‘(denom‘𝑦))) = ((𝐿‘((numer‘𝑦) · (denom‘𝑥))) / (𝐿‘((denom‘𝑦) · (denom‘𝑥)))))
9239, 33, 29, 36, 51, 48, 91syl132anc 1495 . . . . . 6 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → ((𝐿‘(numer‘𝑦)) / (𝐿‘(denom‘𝑦))) = ((𝐿‘((numer‘𝑦) · (denom‘𝑥))) / (𝐿‘((denom‘𝑦) · (denom‘𝑥)))))
933, 14, 15qqhvq 30362 . . . . . . 7 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ ((numer‘𝑦) ∈ ℤ ∧ (denom‘𝑦) ∈ ℤ ∧ (denom‘𝑦) ≠ 0)) → ((ℚHom‘𝑅)‘((numer‘𝑦) / (denom‘𝑦))) = ((𝐿‘(numer‘𝑦)) / (𝐿‘(denom‘𝑦))))
9444, 33, 29, 49, 93syl13anc 1479 . . . . . 6 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → ((ℚHom‘𝑅)‘((numer‘𝑦) / (denom‘𝑦))) = ((𝐿‘(numer‘𝑦)) / (𝐿‘(denom‘𝑦))))
9564, 66mulcomd 10274 . . . . . . . 8 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → ((denom‘𝑥) · (denom‘𝑦)) = ((denom‘𝑦) · (denom‘𝑥)))
9695fveq2d 6358 . . . . . . 7 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → (𝐿‘((denom‘𝑥) · (denom‘𝑦))) = (𝐿‘((denom‘𝑦) · (denom‘𝑥))))
9796oveq2d 6831 . . . . . 6 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → ((𝐿‘((numer‘𝑦) · (denom‘𝑥))) / (𝐿‘((denom‘𝑥) · (denom‘𝑦)))) = ((𝐿‘((numer‘𝑦) · (denom‘𝑥))) / (𝐿‘((denom‘𝑦) · (denom‘𝑥)))))
9892, 94, 973eqtr4d 2805 . . . . 5 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → ((ℚHom‘𝑅)‘((numer‘𝑦) / (denom‘𝑦))) = ((𝐿‘((numer‘𝑦) · (denom‘𝑥))) / (𝐿‘((denom‘𝑥) · (denom‘𝑦)))))
9990, 98eqtrd 2795 . . . 4 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → ((ℚHom‘𝑅)‘𝑦) = ((𝐿‘((numer‘𝑦) · (denom‘𝑥))) / (𝐿‘((denom‘𝑥) · (denom‘𝑦)))))
10088, 99oveq12d 6833 . . 3 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → (((ℚHom‘𝑅)‘𝑥)(+g𝑅)((ℚHom‘𝑅)‘𝑦)) = (((𝐿‘((numer‘𝑥) · (denom‘𝑦))) / (𝐿‘((denom‘𝑥) · (denom‘𝑦))))(+g𝑅)((𝐿‘((numer‘𝑦) · (denom‘𝑥))) / (𝐿‘((denom‘𝑥) · (denom‘𝑦))))))
10157, 81, 1003eqtr4d 2805 . 2 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → ((ℚHom‘𝑅)‘(𝑥 + 𝑦)) = (((ℚHom‘𝑅)‘𝑥)(+g𝑅)((ℚHom‘𝑅)‘𝑦)))
1022, 3, 7, 8, 11, 13, 16, 101isghmd 17891 1 ((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) → (ℚHom‘𝑅) ∈ (𝑄 GrpHom 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1072   = wceq 1632  wcel 2140  wne 2933  Vcvv 3341  wf 6046  cfv 6050  (class class class)co 6815  0cc0 10149   + caddc 10152   · cmul 10154   / cdiv 10897  cn 11233  cz 11590  cq 12002  numercnumer 15664  denomcdenom 15665  Basecbs 16080  s cress 16081  +gcplusg 16164  .rcmulr 16165  0gc0g 16323  Grpcgrp 17644   GrpHom cghm 17879  Ringcrg 18768  Unitcui 18860  /rcdvr 18903   RingHom crh 18935  DivRingcdr 18970  fldccnfld 19969  ringzring 20041  ℤRHomczrh 20071  chrcchr 20073  ℚHomcqqh 30347
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1989  ax-6 2055  ax-7 2091  ax-8 2142  ax-9 2149  ax-10 2169  ax-11 2184  ax-12 2197  ax-13 2392  ax-ext 2741  ax-rep 4924  ax-sep 4934  ax-nul 4942  ax-pow 4993  ax-pr 5056  ax-un 7116  ax-inf2 8714  ax-cnex 10205  ax-resscn 10206  ax-1cn 10207  ax-icn 10208  ax-addcl 10209  ax-addrcl 10210  ax-mulcl 10211  ax-mulrcl 10212  ax-mulcom 10213  ax-addass 10214  ax-mulass 10215  ax-distr 10216  ax-i2m1 10217  ax-1ne0 10218  ax-1rid 10219  ax-rnegex 10220  ax-rrecex 10221  ax-cnre 10222  ax-pre-lttri 10223  ax-pre-lttrn 10224  ax-pre-ltadd 10225  ax-pre-mulgt0 10226  ax-pre-sup 10227  ax-addf 10228  ax-mulf 10229
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2048  df-eu 2612  df-mo 2613  df-clab 2748  df-cleq 2754  df-clel 2757  df-nfc 2892  df-ne 2934  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rmo 3059  df-rab 3060  df-v 3343  df-sbc 3578  df-csb 3676  df-dif 3719  df-un 3721  df-in 3723  df-ss 3730  df-pss 3732  df-nul 4060  df-if 4232  df-pw 4305  df-sn 4323  df-pr 4325  df-tp 4327  df-op 4329  df-uni 4590  df-int 4629  df-iun 4675  df-br 4806  df-opab 4866  df-mpt 4883  df-tr 4906  df-id 5175  df-eprel 5180  df-po 5188  df-so 5189  df-fr 5226  df-we 5228  df-xp 5273  df-rel 5274  df-cnv 5275  df-co 5276  df-dm 5277  df-rn 5278  df-res 5279  df-ima 5280  df-pred 5842  df-ord 5888  df-on 5889  df-lim 5890  df-suc 5891  df-iota 6013  df-fun 6052  df-fn 6053  df-f 6054  df-f1 6055  df-fo 6056  df-f1o 6057  df-fv 6058  df-riota 6776  df-ov 6818  df-oprab 6819  df-mpt2 6820  df-om 7233  df-1st 7335  df-2nd 7336  df-tpos 7523  df-wrecs 7578  df-recs 7639  df-rdg 7677  df-1o 7731  df-oadd 7735  df-er 7914  df-map 8028  df-en 8125  df-dom 8126  df-sdom 8127  df-fin 8128  df-sup 8516  df-inf 8517  df-pnf 10289  df-mnf 10290  df-xr 10291  df-ltxr 10292  df-le 10293  df-sub 10481  df-neg 10482  df-div 10898  df-nn 11234  df-2 11292  df-3 11293  df-4 11294  df-5 11295  df-6 11296  df-7 11297  df-8 11298  df-9 11299  df-n0 11506  df-z 11591  df-dec 11707  df-uz 11901  df-q 12003  df-rp 12047  df-fz 12541  df-fl 12808  df-mod 12884  df-seq 13017  df-exp 13076  df-cj 14059  df-re 14060  df-im 14061  df-sqrt 14195  df-abs 14196  df-dvds 15204  df-gcd 15440  df-numer 15666  df-denom 15667  df-gz 15857  df-struct 16082  df-ndx 16083  df-slot 16084  df-base 16086  df-sets 16087  df-ress 16088  df-plusg 16177  df-mulr 16178  df-starv 16179  df-tset 16183  df-ple 16184  df-ds 16187  df-unif 16188  df-0g 16325  df-mgm 17464  df-sgrp 17506  df-mnd 17517  df-mhm 17557  df-grp 17647  df-minusg 17648  df-sbg 17649  df-mulg 17763  df-subg 17813  df-ghm 17880  df-od 18169  df-cmn 18416  df-mgp 18711  df-ur 18723  df-ring 18770  df-cring 18771  df-oppr 18844  df-dvdsr 18862  df-unit 18863  df-invr 18893  df-dvr 18904  df-rnghom 18938  df-drng 18972  df-subrg 19001  df-cnfld 19970  df-zring 20042  df-zrh 20075  df-chr 20077  df-qqh 30348
This theorem is referenced by:  qqhcn  30366  qqhucn  30367
  Copyright terms: Public domain W3C validator