![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > qqh1 | Structured version Visualization version GIF version |
Description: The image of 1 by the ℚHom homomorphism is the ring's unit. (Contributed by Thierry Arnoux, 22-Oct-2017.) |
Ref | Expression |
---|---|
qqhval2.0 | ⊢ 𝐵 = (Base‘𝑅) |
qqhval2.1 | ⊢ / = (/r‘𝑅) |
qqhval2.2 | ⊢ 𝐿 = (ℤRHom‘𝑅) |
Ref | Expression |
---|---|
qqh1 | ⊢ ((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) → ((ℚHom‘𝑅)‘1) = (1r‘𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zssq 11988 | . . . 4 ⊢ ℤ ⊆ ℚ | |
2 | 1z 11599 | . . . 4 ⊢ 1 ∈ ℤ | |
3 | 1, 2 | sselii 3741 | . . 3 ⊢ 1 ∈ ℚ |
4 | qqhval2.0 | . . . 4 ⊢ 𝐵 = (Base‘𝑅) | |
5 | qqhval2.1 | . . . 4 ⊢ / = (/r‘𝑅) | |
6 | qqhval2.2 | . . . 4 ⊢ 𝐿 = (ℤRHom‘𝑅) | |
7 | 4, 5, 6 | qqhvval 30336 | . . 3 ⊢ (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ 1 ∈ ℚ) → ((ℚHom‘𝑅)‘1) = ((𝐿‘(numer‘1)) / (𝐿‘(denom‘1)))) |
8 | 3, 7 | mpan2 709 | . 2 ⊢ ((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) → ((ℚHom‘𝑅)‘1) = ((𝐿‘(numer‘1)) / (𝐿‘(denom‘1)))) |
9 | gcd1 15451 | . . . . . . . . . 10 ⊢ (1 ∈ ℤ → (1 gcd 1) = 1) | |
10 | 2, 9 | ax-mp 5 | . . . . . . . . 9 ⊢ (1 gcd 1) = 1 |
11 | 1div1e1 10909 | . . . . . . . . . 10 ⊢ (1 / 1) = 1 | |
12 | 11 | eqcomi 2769 | . . . . . . . . 9 ⊢ 1 = (1 / 1) |
13 | 10, 12 | pm3.2i 470 | . . . . . . . 8 ⊢ ((1 gcd 1) = 1 ∧ 1 = (1 / 1)) |
14 | 1nn 11223 | . . . . . . . . 9 ⊢ 1 ∈ ℕ | |
15 | qnumdenbi 15654 | . . . . . . . . 9 ⊢ ((1 ∈ ℚ ∧ 1 ∈ ℤ ∧ 1 ∈ ℕ) → (((1 gcd 1) = 1 ∧ 1 = (1 / 1)) ↔ ((numer‘1) = 1 ∧ (denom‘1) = 1))) | |
16 | 3, 2, 14, 15 | mp3an 1573 | . . . . . . . 8 ⊢ (((1 gcd 1) = 1 ∧ 1 = (1 / 1)) ↔ ((numer‘1) = 1 ∧ (denom‘1) = 1)) |
17 | 13, 16 | mpbi 220 | . . . . . . 7 ⊢ ((numer‘1) = 1 ∧ (denom‘1) = 1) |
18 | 17 | simpli 476 | . . . . . 6 ⊢ (numer‘1) = 1 |
19 | 18 | fveq2i 6355 | . . . . 5 ⊢ (𝐿‘(numer‘1)) = (𝐿‘1) |
20 | 17 | simpri 481 | . . . . . 6 ⊢ (denom‘1) = 1 |
21 | 20 | fveq2i 6355 | . . . . 5 ⊢ (𝐿‘(denom‘1)) = (𝐿‘1) |
22 | 19, 21 | oveq12i 6825 | . . . 4 ⊢ ((𝐿‘(numer‘1)) / (𝐿‘(denom‘1))) = ((𝐿‘1) / (𝐿‘1)) |
23 | drngring 18956 | . . . . . 6 ⊢ (𝑅 ∈ DivRing → 𝑅 ∈ Ring) | |
24 | eqid 2760 | . . . . . . . 8 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
25 | 6, 24 | zrh1 20063 | . . . . . . 7 ⊢ (𝑅 ∈ Ring → (𝐿‘1) = (1r‘𝑅)) |
26 | 25, 25 | oveq12d 6831 | . . . . . 6 ⊢ (𝑅 ∈ Ring → ((𝐿‘1) / (𝐿‘1)) = ((1r‘𝑅) / (1r‘𝑅))) |
27 | 23, 26 | syl 17 | . . . . 5 ⊢ (𝑅 ∈ DivRing → ((𝐿‘1) / (𝐿‘1)) = ((1r‘𝑅) / (1r‘𝑅))) |
28 | 4, 24 | ringidcl 18768 | . . . . . . 7 ⊢ (𝑅 ∈ Ring → (1r‘𝑅) ∈ 𝐵) |
29 | 23, 28 | syl 17 | . . . . . 6 ⊢ (𝑅 ∈ DivRing → (1r‘𝑅) ∈ 𝐵) |
30 | 4, 5, 24 | dvr1 18889 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ (1r‘𝑅) ∈ 𝐵) → ((1r‘𝑅) / (1r‘𝑅)) = (1r‘𝑅)) |
31 | 23, 29, 30 | syl2anc 696 | . . . . 5 ⊢ (𝑅 ∈ DivRing → ((1r‘𝑅) / (1r‘𝑅)) = (1r‘𝑅)) |
32 | 27, 31 | eqtrd 2794 | . . . 4 ⊢ (𝑅 ∈ DivRing → ((𝐿‘1) / (𝐿‘1)) = (1r‘𝑅)) |
33 | 22, 32 | syl5eq 2806 | . . 3 ⊢ (𝑅 ∈ DivRing → ((𝐿‘(numer‘1)) / (𝐿‘(denom‘1))) = (1r‘𝑅)) |
34 | 33 | adantr 472 | . 2 ⊢ ((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) → ((𝐿‘(numer‘1)) / (𝐿‘(denom‘1))) = (1r‘𝑅)) |
35 | 8, 34 | eqtrd 2794 | 1 ⊢ ((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) → ((ℚHom‘𝑅)‘1) = (1r‘𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 = wceq 1632 ∈ wcel 2139 ‘cfv 6049 (class class class)co 6813 0cc0 10128 1c1 10129 / cdiv 10876 ℕcn 11212 ℤcz 11569 ℚcq 11981 gcd cgcd 15418 numercnumer 15643 denomcdenom 15644 Basecbs 16059 1rcur 18701 Ringcrg 18747 /rcdvr 18882 DivRingcdr 18949 ℤRHomczrh 20050 chrcchr 20052 ℚHomcqqh 30325 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-rep 4923 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7114 ax-inf2 8711 ax-cnex 10184 ax-resscn 10185 ax-1cn 10186 ax-icn 10187 ax-addcl 10188 ax-addrcl 10189 ax-mulcl 10190 ax-mulrcl 10191 ax-mulcom 10192 ax-addass 10193 ax-mulass 10194 ax-distr 10195 ax-i2m1 10196 ax-1ne0 10197 ax-1rid 10198 ax-rnegex 10199 ax-rrecex 10200 ax-cnre 10201 ax-pre-lttri 10202 ax-pre-lttrn 10203 ax-pre-ltadd 10204 ax-pre-mulgt0 10205 ax-pre-sup 10206 ax-addf 10207 ax-mulf 10208 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-reu 3057 df-rmo 3058 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-int 4628 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-pred 5841 df-ord 5887 df-on 5888 df-lim 5889 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-riota 6774 df-ov 6816 df-oprab 6817 df-mpt2 6818 df-om 7231 df-1st 7333 df-2nd 7334 df-tpos 7521 df-wrecs 7576 df-recs 7637 df-rdg 7675 df-1o 7729 df-oadd 7733 df-er 7911 df-map 8025 df-en 8122 df-dom 8123 df-sdom 8124 df-fin 8125 df-sup 8513 df-inf 8514 df-pnf 10268 df-mnf 10269 df-xr 10270 df-ltxr 10271 df-le 10272 df-sub 10460 df-neg 10461 df-div 10877 df-nn 11213 df-2 11271 df-3 11272 df-4 11273 df-5 11274 df-6 11275 df-7 11276 df-8 11277 df-9 11278 df-n0 11485 df-z 11570 df-dec 11686 df-uz 11880 df-q 11982 df-rp 12026 df-fz 12520 df-fl 12787 df-mod 12863 df-seq 12996 df-exp 13055 df-cj 14038 df-re 14039 df-im 14040 df-sqrt 14174 df-abs 14175 df-dvds 15183 df-gcd 15419 df-numer 15645 df-denom 15646 df-gz 15836 df-struct 16061 df-ndx 16062 df-slot 16063 df-base 16065 df-sets 16066 df-ress 16067 df-plusg 16156 df-mulr 16157 df-starv 16158 df-tset 16162 df-ple 16163 df-ds 16166 df-unif 16167 df-0g 16304 df-mgm 17443 df-sgrp 17485 df-mnd 17496 df-mhm 17536 df-grp 17626 df-minusg 17627 df-sbg 17628 df-mulg 17742 df-subg 17792 df-ghm 17859 df-od 18148 df-cmn 18395 df-mgp 18690 df-ur 18702 df-ring 18749 df-cring 18750 df-oppr 18823 df-dvdsr 18841 df-unit 18842 df-invr 18872 df-dvr 18883 df-rnghom 18917 df-drng 18951 df-subrg 18980 df-cnfld 19949 df-zring 20021 df-zrh 20054 df-chr 20056 df-qqh 30326 |
This theorem is referenced by: qqhrhm 30342 |
Copyright terms: Public domain | W3C validator |