Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  qqh1 Structured version   Visualization version   GIF version

Theorem qqh1 30338
Description: The image of 1 by the ℚHom homomorphism is the ring's unit. (Contributed by Thierry Arnoux, 22-Oct-2017.)
Hypotheses
Ref Expression
qqhval2.0 𝐵 = (Base‘𝑅)
qqhval2.1 / = (/r𝑅)
qqhval2.2 𝐿 = (ℤRHom‘𝑅)
Assertion
Ref Expression
qqh1 ((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) → ((ℚHom‘𝑅)‘1) = (1r𝑅))

Proof of Theorem qqh1
StepHypRef Expression
1 zssq 11988 . . . 4 ℤ ⊆ ℚ
2 1z 11599 . . . 4 1 ∈ ℤ
31, 2sselii 3741 . . 3 1 ∈ ℚ
4 qqhval2.0 . . . 4 𝐵 = (Base‘𝑅)
5 qqhval2.1 . . . 4 / = (/r𝑅)
6 qqhval2.2 . . . 4 𝐿 = (ℤRHom‘𝑅)
74, 5, 6qqhvval 30336 . . 3 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ 1 ∈ ℚ) → ((ℚHom‘𝑅)‘1) = ((𝐿‘(numer‘1)) / (𝐿‘(denom‘1))))
83, 7mpan2 709 . 2 ((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) → ((ℚHom‘𝑅)‘1) = ((𝐿‘(numer‘1)) / (𝐿‘(denom‘1))))
9 gcd1 15451 . . . . . . . . . 10 (1 ∈ ℤ → (1 gcd 1) = 1)
102, 9ax-mp 5 . . . . . . . . 9 (1 gcd 1) = 1
11 1div1e1 10909 . . . . . . . . . 10 (1 / 1) = 1
1211eqcomi 2769 . . . . . . . . 9 1 = (1 / 1)
1310, 12pm3.2i 470 . . . . . . . 8 ((1 gcd 1) = 1 ∧ 1 = (1 / 1))
14 1nn 11223 . . . . . . . . 9 1 ∈ ℕ
15 qnumdenbi 15654 . . . . . . . . 9 ((1 ∈ ℚ ∧ 1 ∈ ℤ ∧ 1 ∈ ℕ) → (((1 gcd 1) = 1 ∧ 1 = (1 / 1)) ↔ ((numer‘1) = 1 ∧ (denom‘1) = 1)))
163, 2, 14, 15mp3an 1573 . . . . . . . 8 (((1 gcd 1) = 1 ∧ 1 = (1 / 1)) ↔ ((numer‘1) = 1 ∧ (denom‘1) = 1))
1713, 16mpbi 220 . . . . . . 7 ((numer‘1) = 1 ∧ (denom‘1) = 1)
1817simpli 476 . . . . . 6 (numer‘1) = 1
1918fveq2i 6355 . . . . 5 (𝐿‘(numer‘1)) = (𝐿‘1)
2017simpri 481 . . . . . 6 (denom‘1) = 1
2120fveq2i 6355 . . . . 5 (𝐿‘(denom‘1)) = (𝐿‘1)
2219, 21oveq12i 6825 . . . 4 ((𝐿‘(numer‘1)) / (𝐿‘(denom‘1))) = ((𝐿‘1) / (𝐿‘1))
23 drngring 18956 . . . . . 6 (𝑅 ∈ DivRing → 𝑅 ∈ Ring)
24 eqid 2760 . . . . . . . 8 (1r𝑅) = (1r𝑅)
256, 24zrh1 20063 . . . . . . 7 (𝑅 ∈ Ring → (𝐿‘1) = (1r𝑅))
2625, 25oveq12d 6831 . . . . . 6 (𝑅 ∈ Ring → ((𝐿‘1) / (𝐿‘1)) = ((1r𝑅) / (1r𝑅)))
2723, 26syl 17 . . . . 5 (𝑅 ∈ DivRing → ((𝐿‘1) / (𝐿‘1)) = ((1r𝑅) / (1r𝑅)))
284, 24ringidcl 18768 . . . . . . 7 (𝑅 ∈ Ring → (1r𝑅) ∈ 𝐵)
2923, 28syl 17 . . . . . 6 (𝑅 ∈ DivRing → (1r𝑅) ∈ 𝐵)
304, 5, 24dvr1 18889 . . . . . 6 ((𝑅 ∈ Ring ∧ (1r𝑅) ∈ 𝐵) → ((1r𝑅) / (1r𝑅)) = (1r𝑅))
3123, 29, 30syl2anc 696 . . . . 5 (𝑅 ∈ DivRing → ((1r𝑅) / (1r𝑅)) = (1r𝑅))
3227, 31eqtrd 2794 . . . 4 (𝑅 ∈ DivRing → ((𝐿‘1) / (𝐿‘1)) = (1r𝑅))
3322, 32syl5eq 2806 . . 3 (𝑅 ∈ DivRing → ((𝐿‘(numer‘1)) / (𝐿‘(denom‘1))) = (1r𝑅))
3433adantr 472 . 2 ((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) → ((𝐿‘(numer‘1)) / (𝐿‘(denom‘1))) = (1r𝑅))
358, 34eqtrd 2794 1 ((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) → ((ℚHom‘𝑅)‘1) = (1r𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1632  wcel 2139  cfv 6049  (class class class)co 6813  0cc0 10128  1c1 10129   / cdiv 10876  cn 11212  cz 11569  cq 11981   gcd cgcd 15418  numercnumer 15643  denomcdenom 15644  Basecbs 16059  1rcur 18701  Ringcrg 18747  /rcdvr 18882  DivRingcdr 18949  ℤRHomczrh 20050  chrcchr 20052  ℚHomcqqh 30325
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-inf2 8711  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205  ax-pre-sup 10206  ax-addf 10207  ax-mulf 10208
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-om 7231  df-1st 7333  df-2nd 7334  df-tpos 7521  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-1o 7729  df-oadd 7733  df-er 7911  df-map 8025  df-en 8122  df-dom 8123  df-sdom 8124  df-fin 8125  df-sup 8513  df-inf 8514  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-div 10877  df-nn 11213  df-2 11271  df-3 11272  df-4 11273  df-5 11274  df-6 11275  df-7 11276  df-8 11277  df-9 11278  df-n0 11485  df-z 11570  df-dec 11686  df-uz 11880  df-q 11982  df-rp 12026  df-fz 12520  df-fl 12787  df-mod 12863  df-seq 12996  df-exp 13055  df-cj 14038  df-re 14039  df-im 14040  df-sqrt 14174  df-abs 14175  df-dvds 15183  df-gcd 15419  df-numer 15645  df-denom 15646  df-gz 15836  df-struct 16061  df-ndx 16062  df-slot 16063  df-base 16065  df-sets 16066  df-ress 16067  df-plusg 16156  df-mulr 16157  df-starv 16158  df-tset 16162  df-ple 16163  df-ds 16166  df-unif 16167  df-0g 16304  df-mgm 17443  df-sgrp 17485  df-mnd 17496  df-mhm 17536  df-grp 17626  df-minusg 17627  df-sbg 17628  df-mulg 17742  df-subg 17792  df-ghm 17859  df-od 18148  df-cmn 18395  df-mgp 18690  df-ur 18702  df-ring 18749  df-cring 18750  df-oppr 18823  df-dvdsr 18841  df-unit 18842  df-invr 18872  df-dvr 18883  df-rnghom 18917  df-drng 18951  df-subrg 18980  df-cnfld 19949  df-zring 20021  df-zrh 20054  df-chr 20056  df-qqh 30326
This theorem is referenced by:  qqhrhm  30342
  Copyright terms: Public domain W3C validator