![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > qqh0 | Structured version Visualization version GIF version |
Description: The image of 0 by the ℚHom homomorphism is the ring's zero. (Contributed by Thierry Arnoux, 22-Oct-2017.) |
Ref | Expression |
---|---|
qqhval2.0 | ⊢ 𝐵 = (Base‘𝑅) |
qqhval2.1 | ⊢ / = (/r‘𝑅) |
qqhval2.2 | ⊢ 𝐿 = (ℤRHom‘𝑅) |
Ref | Expression |
---|---|
qqh0 | ⊢ ((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) → ((ℚHom‘𝑅)‘0) = (0g‘𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zssq 12003 | . . . 4 ⊢ ℤ ⊆ ℚ | |
2 | 0z 11595 | . . . 4 ⊢ 0 ∈ ℤ | |
3 | 1, 2 | sselii 3749 | . . 3 ⊢ 0 ∈ ℚ |
4 | qqhval2.0 | . . . 4 ⊢ 𝐵 = (Base‘𝑅) | |
5 | qqhval2.1 | . . . 4 ⊢ / = (/r‘𝑅) | |
6 | qqhval2.2 | . . . 4 ⊢ 𝐿 = (ℤRHom‘𝑅) | |
7 | 4, 5, 6 | qqhvval 30367 | . . 3 ⊢ (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ 0 ∈ ℚ) → ((ℚHom‘𝑅)‘0) = ((𝐿‘(numer‘0)) / (𝐿‘(denom‘0)))) |
8 | 3, 7 | mpan2 671 | . 2 ⊢ ((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) → ((ℚHom‘𝑅)‘0) = ((𝐿‘(numer‘0)) / (𝐿‘(denom‘0)))) |
9 | 1z 11614 | . . . . . . . . . . 11 ⊢ 1 ∈ ℤ | |
10 | gcd0id 15448 | . . . . . . . . . . 11 ⊢ (1 ∈ ℤ → (0 gcd 1) = (abs‘1)) | |
11 | 9, 10 | ax-mp 5 | . . . . . . . . . 10 ⊢ (0 gcd 1) = (abs‘1) |
12 | abs1 14245 | . . . . . . . . . 10 ⊢ (abs‘1) = 1 | |
13 | 11, 12 | eqtri 2793 | . . . . . . . . 9 ⊢ (0 gcd 1) = 1 |
14 | 0cn 10238 | . . . . . . . . . . 11 ⊢ 0 ∈ ℂ | |
15 | 14 | div1i 10959 | . . . . . . . . . 10 ⊢ (0 / 1) = 0 |
16 | 15 | eqcomi 2780 | . . . . . . . . 9 ⊢ 0 = (0 / 1) |
17 | 13, 16 | pm3.2i 456 | . . . . . . . 8 ⊢ ((0 gcd 1) = 1 ∧ 0 = (0 / 1)) |
18 | 1nn 11237 | . . . . . . . . 9 ⊢ 1 ∈ ℕ | |
19 | qnumdenbi 15659 | . . . . . . . . 9 ⊢ ((0 ∈ ℚ ∧ 0 ∈ ℤ ∧ 1 ∈ ℕ) → (((0 gcd 1) = 1 ∧ 0 = (0 / 1)) ↔ ((numer‘0) = 0 ∧ (denom‘0) = 1))) | |
20 | 3, 2, 18, 19 | mp3an 1572 | . . . . . . . 8 ⊢ (((0 gcd 1) = 1 ∧ 0 = (0 / 1)) ↔ ((numer‘0) = 0 ∧ (denom‘0) = 1)) |
21 | 17, 20 | mpbi 220 | . . . . . . 7 ⊢ ((numer‘0) = 0 ∧ (denom‘0) = 1) |
22 | 21 | simpli 470 | . . . . . 6 ⊢ (numer‘0) = 0 |
23 | 22 | fveq2i 6336 | . . . . 5 ⊢ (𝐿‘(numer‘0)) = (𝐿‘0) |
24 | 21 | simpri 473 | . . . . . 6 ⊢ (denom‘0) = 1 |
25 | 24 | fveq2i 6336 | . . . . 5 ⊢ (𝐿‘(denom‘0)) = (𝐿‘1) |
26 | 23, 25 | oveq12i 6808 | . . . 4 ⊢ ((𝐿‘(numer‘0)) / (𝐿‘(denom‘0))) = ((𝐿‘0) / (𝐿‘1)) |
27 | drngring 18964 | . . . . . 6 ⊢ (𝑅 ∈ DivRing → 𝑅 ∈ Ring) | |
28 | eqid 2771 | . . . . . . . 8 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
29 | 6, 28 | zrh0 20077 | . . . . . . 7 ⊢ (𝑅 ∈ Ring → (𝐿‘0) = (0g‘𝑅)) |
30 | eqid 2771 | . . . . . . . 8 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
31 | 6, 30 | zrh1 20076 | . . . . . . 7 ⊢ (𝑅 ∈ Ring → (𝐿‘1) = (1r‘𝑅)) |
32 | 29, 31 | oveq12d 6814 | . . . . . 6 ⊢ (𝑅 ∈ Ring → ((𝐿‘0) / (𝐿‘1)) = ((0g‘𝑅) / (1r‘𝑅))) |
33 | 27, 32 | syl 17 | . . . . 5 ⊢ (𝑅 ∈ DivRing → ((𝐿‘0) / (𝐿‘1)) = ((0g‘𝑅) / (1r‘𝑅))) |
34 | drnggrp 18965 | . . . . . . 7 ⊢ (𝑅 ∈ DivRing → 𝑅 ∈ Grp) | |
35 | 4, 28 | grpidcl 17658 | . . . . . . 7 ⊢ (𝑅 ∈ Grp → (0g‘𝑅) ∈ 𝐵) |
36 | 34, 35 | syl 17 | . . . . . 6 ⊢ (𝑅 ∈ DivRing → (0g‘𝑅) ∈ 𝐵) |
37 | 4, 5, 30 | dvr1 18897 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ (0g‘𝑅) ∈ 𝐵) → ((0g‘𝑅) / (1r‘𝑅)) = (0g‘𝑅)) |
38 | 27, 36, 37 | syl2anc 573 | . . . . 5 ⊢ (𝑅 ∈ DivRing → ((0g‘𝑅) / (1r‘𝑅)) = (0g‘𝑅)) |
39 | 33, 38 | eqtrd 2805 | . . . 4 ⊢ (𝑅 ∈ DivRing → ((𝐿‘0) / (𝐿‘1)) = (0g‘𝑅)) |
40 | 26, 39 | syl5eq 2817 | . . 3 ⊢ (𝑅 ∈ DivRing → ((𝐿‘(numer‘0)) / (𝐿‘(denom‘0))) = (0g‘𝑅)) |
41 | 40 | adantr 466 | . 2 ⊢ ((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) → ((𝐿‘(numer‘0)) / (𝐿‘(denom‘0))) = (0g‘𝑅)) |
42 | 8, 41 | eqtrd 2805 | 1 ⊢ ((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) → ((ℚHom‘𝑅)‘0) = (0g‘𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 382 = wceq 1631 ∈ wcel 2145 ‘cfv 6030 (class class class)co 6796 0cc0 10142 1c1 10143 / cdiv 10890 ℕcn 11226 ℤcz 11584 ℚcq 11996 abscabs 14182 gcd cgcd 15424 numercnumer 15648 denomcdenom 15649 Basecbs 16064 0gc0g 16308 Grpcgrp 17630 1rcur 18709 Ringcrg 18755 /rcdvr 18890 DivRingcdr 18957 ℤRHomczrh 20063 chrcchr 20065 ℚHomcqqh 30356 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-rep 4905 ax-sep 4916 ax-nul 4924 ax-pow 4975 ax-pr 5035 ax-un 7100 ax-inf2 8706 ax-cnex 10198 ax-resscn 10199 ax-1cn 10200 ax-icn 10201 ax-addcl 10202 ax-addrcl 10203 ax-mulcl 10204 ax-mulrcl 10205 ax-mulcom 10206 ax-addass 10207 ax-mulass 10208 ax-distr 10209 ax-i2m1 10210 ax-1ne0 10211 ax-1rid 10212 ax-rnegex 10213 ax-rrecex 10214 ax-cnre 10215 ax-pre-lttri 10216 ax-pre-lttrn 10217 ax-pre-ltadd 10218 ax-pre-mulgt0 10219 ax-pre-sup 10220 ax-addf 10221 ax-mulf 10222 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3or 1072 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4227 df-pw 4300 df-sn 4318 df-pr 4320 df-tp 4322 df-op 4324 df-uni 4576 df-int 4613 df-iun 4657 df-br 4788 df-opab 4848 df-mpt 4865 df-tr 4888 df-id 5158 df-eprel 5163 df-po 5171 df-so 5172 df-fr 5209 df-we 5211 df-xp 5256 df-rel 5257 df-cnv 5258 df-co 5259 df-dm 5260 df-rn 5261 df-res 5262 df-ima 5263 df-pred 5822 df-ord 5868 df-on 5869 df-lim 5870 df-suc 5871 df-iota 5993 df-fun 6032 df-fn 6033 df-f 6034 df-f1 6035 df-fo 6036 df-f1o 6037 df-fv 6038 df-riota 6757 df-ov 6799 df-oprab 6800 df-mpt2 6801 df-om 7217 df-1st 7319 df-2nd 7320 df-tpos 7508 df-wrecs 7563 df-recs 7625 df-rdg 7663 df-1o 7717 df-oadd 7721 df-er 7900 df-map 8015 df-en 8114 df-dom 8115 df-sdom 8116 df-fin 8117 df-sup 8508 df-inf 8509 df-pnf 10282 df-mnf 10283 df-xr 10284 df-ltxr 10285 df-le 10286 df-sub 10474 df-neg 10475 df-div 10891 df-nn 11227 df-2 11285 df-3 11286 df-4 11287 df-5 11288 df-6 11289 df-7 11290 df-8 11291 df-9 11292 df-n0 11500 df-z 11585 df-dec 11701 df-uz 11894 df-q 11997 df-rp 12036 df-fz 12534 df-fl 12801 df-mod 12877 df-seq 13009 df-exp 13068 df-cj 14047 df-re 14048 df-im 14049 df-sqrt 14183 df-abs 14184 df-dvds 15190 df-gcd 15425 df-numer 15650 df-denom 15651 df-gz 15841 df-struct 16066 df-ndx 16067 df-slot 16068 df-base 16070 df-sets 16071 df-ress 16072 df-plusg 16162 df-mulr 16163 df-starv 16164 df-tset 16168 df-ple 16169 df-ds 16172 df-unif 16173 df-0g 16310 df-mgm 17450 df-sgrp 17492 df-mnd 17503 df-mhm 17543 df-grp 17633 df-minusg 17634 df-sbg 17635 df-mulg 17749 df-subg 17799 df-ghm 17866 df-od 18155 df-cmn 18402 df-mgp 18698 df-ur 18710 df-ring 18757 df-cring 18758 df-oppr 18831 df-dvdsr 18849 df-unit 18850 df-invr 18880 df-dvr 18891 df-rnghom 18925 df-drng 18959 df-subrg 18988 df-cnfld 19962 df-zring 20034 df-zrh 20067 df-chr 20069 df-qqh 30357 |
This theorem is referenced by: qqhcn 30375 rrh0 30399 |
Copyright terms: Public domain | W3C validator |