![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > qliftval | Structured version Visualization version GIF version |
Description: The value of the function 𝐹. (Contributed by Mario Carneiro, 23-Dec-2016.) |
Ref | Expression |
---|---|
qlift.1 | ⊢ 𝐹 = ran (𝑥 ∈ 𝑋 ↦ 〈[𝑥]𝑅, 𝐴〉) |
qlift.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ 𝑌) |
qlift.3 | ⊢ (𝜑 → 𝑅 Er 𝑋) |
qlift.4 | ⊢ (𝜑 → 𝑋 ∈ V) |
qliftval.4 | ⊢ (𝑥 = 𝐶 → 𝐴 = 𝐵) |
qliftval.6 | ⊢ (𝜑 → Fun 𝐹) |
Ref | Expression |
---|---|
qliftval | ⊢ ((𝜑 ∧ 𝐶 ∈ 𝑋) → (𝐹‘[𝐶]𝑅) = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | qlift.1 | . 2 ⊢ 𝐹 = ran (𝑥 ∈ 𝑋 ↦ 〈[𝑥]𝑅, 𝐴〉) | |
2 | qlift.2 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ 𝑌) | |
3 | qlift.3 | . . 3 ⊢ (𝜑 → 𝑅 Er 𝑋) | |
4 | qlift.4 | . . 3 ⊢ (𝜑 → 𝑋 ∈ V) | |
5 | 1, 2, 3, 4 | qliftlem 7946 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → [𝑥]𝑅 ∈ (𝑋 / 𝑅)) |
6 | eceq1 7900 | . 2 ⊢ (𝑥 = 𝐶 → [𝑥]𝑅 = [𝐶]𝑅) | |
7 | qliftval.4 | . 2 ⊢ (𝑥 = 𝐶 → 𝐴 = 𝐵) | |
8 | qliftval.6 | . 2 ⊢ (𝜑 → Fun 𝐹) | |
9 | 1, 5, 2, 6, 7, 8 | fliftval 6681 | 1 ⊢ ((𝜑 ∧ 𝐶 ∈ 𝑋) → (𝐹‘[𝐶]𝑅) = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1596 ∈ wcel 2103 Vcvv 3304 〈cop 4291 ↦ cmpt 4837 ran crn 5219 Fun wfun 5995 ‘cfv 6001 Er wer 7859 [cec 7860 / cqs 7861 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1835 ax-4 1850 ax-5 1952 ax-6 2018 ax-7 2054 ax-8 2105 ax-9 2112 ax-10 2132 ax-11 2147 ax-12 2160 ax-13 2355 ax-ext 2704 ax-sep 4889 ax-nul 4897 ax-pow 4948 ax-pr 5011 ax-un 7066 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1599 df-ex 1818 df-nf 1823 df-sb 2011 df-eu 2575 df-mo 2576 df-clab 2711 df-cleq 2717 df-clel 2720 df-nfc 2855 df-ral 3019 df-rex 3020 df-rab 3023 df-v 3306 df-sbc 3542 df-dif 3683 df-un 3685 df-in 3687 df-ss 3694 df-nul 4024 df-if 4195 df-pw 4268 df-sn 4286 df-pr 4288 df-op 4292 df-uni 4545 df-br 4761 df-opab 4821 df-mpt 4838 df-id 5128 df-xp 5224 df-rel 5225 df-cnv 5226 df-co 5227 df-dm 5228 df-rn 5229 df-res 5230 df-ima 5231 df-iota 5964 df-fun 6003 df-fv 6009 df-er 7862 df-ec 7864 df-qs 7868 |
This theorem is referenced by: orbstaval 17866 frgpupval 18308 |
Copyright terms: Public domain | W3C validator |