Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  qirropth Structured version   Visualization version   GIF version

Theorem qirropth 37975
Description: This lemma implements the concept of "equate rational and irrational parts", used to prove many arithmetical properties of the X and Y sequences. (Contributed by Stefan O'Rear, 21-Sep-2014.)
Assertion
Ref Expression
qirropth ((𝐴 ∈ (ℂ ∖ ℚ) ∧ (𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ) ∧ (𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ)) → ((𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸)) ↔ (𝐵 = 𝐷𝐶 = 𝐸)))

Proof of Theorem qirropth
StepHypRef Expression
1 eldifn 3876 . . . . . . . 8 (𝐴 ∈ (ℂ ∖ ℚ) → ¬ 𝐴 ∈ ℚ)
213ad2ant1 1128 . . . . . . 7 ((𝐴 ∈ (ℂ ∖ ℚ) ∧ (𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ) ∧ (𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ)) → ¬ 𝐴 ∈ ℚ)
32adantr 472 . . . . . 6 (((𝐴 ∈ (ℂ ∖ ℚ) ∧ (𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ) ∧ (𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) → ¬ 𝐴 ∈ ℚ)
4 simpll1 1255 . . . . . . . . . . . 12 ((((𝐴 ∈ (ℂ ∖ ℚ) ∧ (𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ) ∧ (𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) ∧ ¬ 𝐶 = 𝐸) → 𝐴 ∈ (ℂ ∖ ℚ))
54eldifad 3727 . . . . . . . . . . 11 ((((𝐴 ∈ (ℂ ∖ ℚ) ∧ (𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ) ∧ (𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) ∧ ¬ 𝐶 = 𝐸) → 𝐴 ∈ ℂ)
6 simp2r 1243 . . . . . . . . . . . . 13 ((𝐴 ∈ (ℂ ∖ ℚ) ∧ (𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ) ∧ (𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ)) → 𝐶 ∈ ℚ)
76ad2antrr 764 . . . . . . . . . . . 12 ((((𝐴 ∈ (ℂ ∖ ℚ) ∧ (𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ) ∧ (𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) ∧ ¬ 𝐶 = 𝐸) → 𝐶 ∈ ℚ)
8 qcn 11995 . . . . . . . . . . . 12 (𝐶 ∈ ℚ → 𝐶 ∈ ℂ)
97, 8syl 17 . . . . . . . . . . 11 ((((𝐴 ∈ (ℂ ∖ ℚ) ∧ (𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ) ∧ (𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) ∧ ¬ 𝐶 = 𝐸) → 𝐶 ∈ ℂ)
10 simp3r 1245 . . . . . . . . . . . . 13 ((𝐴 ∈ (ℂ ∖ ℚ) ∧ (𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ) ∧ (𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ)) → 𝐸 ∈ ℚ)
1110ad2antrr 764 . . . . . . . . . . . 12 ((((𝐴 ∈ (ℂ ∖ ℚ) ∧ (𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ) ∧ (𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) ∧ ¬ 𝐶 = 𝐸) → 𝐸 ∈ ℚ)
12 qcn 11995 . . . . . . . . . . . 12 (𝐸 ∈ ℚ → 𝐸 ∈ ℂ)
1311, 12syl 17 . . . . . . . . . . 11 ((((𝐴 ∈ (ℂ ∖ ℚ) ∧ (𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ) ∧ (𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) ∧ ¬ 𝐶 = 𝐸) → 𝐸 ∈ ℂ)
145, 9, 13subdid 10678 . . . . . . . . . 10 ((((𝐴 ∈ (ℂ ∖ ℚ) ∧ (𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ) ∧ (𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) ∧ ¬ 𝐶 = 𝐸) → (𝐴 · (𝐶𝐸)) = ((𝐴 · 𝐶) − (𝐴 · 𝐸)))
15 qsubcl 12000 . . . . . . . . . . . . 13 ((𝐶 ∈ ℚ ∧ 𝐸 ∈ ℚ) → (𝐶𝐸) ∈ ℚ)
167, 11, 15syl2anc 696 . . . . . . . . . . . 12 ((((𝐴 ∈ (ℂ ∖ ℚ) ∧ (𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ) ∧ (𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) ∧ ¬ 𝐶 = 𝐸) → (𝐶𝐸) ∈ ℚ)
17 qcn 11995 . . . . . . . . . . . 12 ((𝐶𝐸) ∈ ℚ → (𝐶𝐸) ∈ ℂ)
1816, 17syl 17 . . . . . . . . . . 11 ((((𝐴 ∈ (ℂ ∖ ℚ) ∧ (𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ) ∧ (𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) ∧ ¬ 𝐶 = 𝐸) → (𝐶𝐸) ∈ ℂ)
1918, 5mulcomd 10253 . . . . . . . . . 10 ((((𝐴 ∈ (ℂ ∖ ℚ) ∧ (𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ) ∧ (𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) ∧ ¬ 𝐶 = 𝐸) → ((𝐶𝐸) · 𝐴) = (𝐴 · (𝐶𝐸)))
20 simplr 809 . . . . . . . . . . 11 ((((𝐴 ∈ (ℂ ∖ ℚ) ∧ (𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ) ∧ (𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) ∧ ¬ 𝐶 = 𝐸) → (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸)))
21 simp2l 1242 . . . . . . . . . . . . . 14 ((𝐴 ∈ (ℂ ∖ ℚ) ∧ (𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ) ∧ (𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ)) → 𝐵 ∈ ℚ)
2221ad2antrr 764 . . . . . . . . . . . . 13 ((((𝐴 ∈ (ℂ ∖ ℚ) ∧ (𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ) ∧ (𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) ∧ ¬ 𝐶 = 𝐸) → 𝐵 ∈ ℚ)
23 qcn 11995 . . . . . . . . . . . . 13 (𝐵 ∈ ℚ → 𝐵 ∈ ℂ)
2422, 23syl 17 . . . . . . . . . . . 12 ((((𝐴 ∈ (ℂ ∖ ℚ) ∧ (𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ) ∧ (𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) ∧ ¬ 𝐶 = 𝐸) → 𝐵 ∈ ℂ)
255, 9mulcld 10252 . . . . . . . . . . . 12 ((((𝐴 ∈ (ℂ ∖ ℚ) ∧ (𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ) ∧ (𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) ∧ ¬ 𝐶 = 𝐸) → (𝐴 · 𝐶) ∈ ℂ)
26 simp3l 1244 . . . . . . . . . . . . . 14 ((𝐴 ∈ (ℂ ∖ ℚ) ∧ (𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ) ∧ (𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ)) → 𝐷 ∈ ℚ)
2726ad2antrr 764 . . . . . . . . . . . . 13 ((((𝐴 ∈ (ℂ ∖ ℚ) ∧ (𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ) ∧ (𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) ∧ ¬ 𝐶 = 𝐸) → 𝐷 ∈ ℚ)
28 qcn 11995 . . . . . . . . . . . . 13 (𝐷 ∈ ℚ → 𝐷 ∈ ℂ)
2927, 28syl 17 . . . . . . . . . . . 12 ((((𝐴 ∈ (ℂ ∖ ℚ) ∧ (𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ) ∧ (𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) ∧ ¬ 𝐶 = 𝐸) → 𝐷 ∈ ℂ)
305, 13mulcld 10252 . . . . . . . . . . . 12 ((((𝐴 ∈ (ℂ ∖ ℚ) ∧ (𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ) ∧ (𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) ∧ ¬ 𝐶 = 𝐸) → (𝐴 · 𝐸) ∈ ℂ)
3124, 25, 29, 30addsubeq4d 10635 . . . . . . . . . . 11 ((((𝐴 ∈ (ℂ ∖ ℚ) ∧ (𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ) ∧ (𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) ∧ ¬ 𝐶 = 𝐸) → ((𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸)) ↔ (𝐷𝐵) = ((𝐴 · 𝐶) − (𝐴 · 𝐸))))
3220, 31mpbid 222 . . . . . . . . . 10 ((((𝐴 ∈ (ℂ ∖ ℚ) ∧ (𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ) ∧ (𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) ∧ ¬ 𝐶 = 𝐸) → (𝐷𝐵) = ((𝐴 · 𝐶) − (𝐴 · 𝐸)))
3314, 19, 323eqtr4d 2804 . . . . . . . . 9 ((((𝐴 ∈ (ℂ ∖ ℚ) ∧ (𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ) ∧ (𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) ∧ ¬ 𝐶 = 𝐸) → ((𝐶𝐸) · 𝐴) = (𝐷𝐵))
34 qsubcl 12000 . . . . . . . . . . . 12 ((𝐷 ∈ ℚ ∧ 𝐵 ∈ ℚ) → (𝐷𝐵) ∈ ℚ)
3527, 22, 34syl2anc 696 . . . . . . . . . . 11 ((((𝐴 ∈ (ℂ ∖ ℚ) ∧ (𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ) ∧ (𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) ∧ ¬ 𝐶 = 𝐸) → (𝐷𝐵) ∈ ℚ)
36 qcn 11995 . . . . . . . . . . 11 ((𝐷𝐵) ∈ ℚ → (𝐷𝐵) ∈ ℂ)
3735, 36syl 17 . . . . . . . . . 10 ((((𝐴 ∈ (ℂ ∖ ℚ) ∧ (𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ) ∧ (𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) ∧ ¬ 𝐶 = 𝐸) → (𝐷𝐵) ∈ ℂ)
38 simpr 479 . . . . . . . . . . 11 ((((𝐴 ∈ (ℂ ∖ ℚ) ∧ (𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ) ∧ (𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) ∧ ¬ 𝐶 = 𝐸) → ¬ 𝐶 = 𝐸)
39 subeq0 10499 . . . . . . . . . . . . 13 ((𝐶 ∈ ℂ ∧ 𝐸 ∈ ℂ) → ((𝐶𝐸) = 0 ↔ 𝐶 = 𝐸))
4039necon3abid 2968 . . . . . . . . . . . 12 ((𝐶 ∈ ℂ ∧ 𝐸 ∈ ℂ) → ((𝐶𝐸) ≠ 0 ↔ ¬ 𝐶 = 𝐸))
419, 13, 40syl2anc 696 . . . . . . . . . . 11 ((((𝐴 ∈ (ℂ ∖ ℚ) ∧ (𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ) ∧ (𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) ∧ ¬ 𝐶 = 𝐸) → ((𝐶𝐸) ≠ 0 ↔ ¬ 𝐶 = 𝐸))
4238, 41mpbird 247 . . . . . . . . . 10 ((((𝐴 ∈ (ℂ ∖ ℚ) ∧ (𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ) ∧ (𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) ∧ ¬ 𝐶 = 𝐸) → (𝐶𝐸) ≠ 0)
4337, 18, 5, 42divmuld 11015 . . . . . . . . 9 ((((𝐴 ∈ (ℂ ∖ ℚ) ∧ (𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ) ∧ (𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) ∧ ¬ 𝐶 = 𝐸) → (((𝐷𝐵) / (𝐶𝐸)) = 𝐴 ↔ ((𝐶𝐸) · 𝐴) = (𝐷𝐵)))
4433, 43mpbird 247 . . . . . . . 8 ((((𝐴 ∈ (ℂ ∖ ℚ) ∧ (𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ) ∧ (𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) ∧ ¬ 𝐶 = 𝐸) → ((𝐷𝐵) / (𝐶𝐸)) = 𝐴)
45 qdivcl 12002 . . . . . . . . 9 (((𝐷𝐵) ∈ ℚ ∧ (𝐶𝐸) ∈ ℚ ∧ (𝐶𝐸) ≠ 0) → ((𝐷𝐵) / (𝐶𝐸)) ∈ ℚ)
4635, 16, 42, 45syl3anc 1477 . . . . . . . 8 ((((𝐴 ∈ (ℂ ∖ ℚ) ∧ (𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ) ∧ (𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) ∧ ¬ 𝐶 = 𝐸) → ((𝐷𝐵) / (𝐶𝐸)) ∈ ℚ)
4744, 46eqeltrrd 2840 . . . . . . 7 ((((𝐴 ∈ (ℂ ∖ ℚ) ∧ (𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ) ∧ (𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) ∧ ¬ 𝐶 = 𝐸) → 𝐴 ∈ ℚ)
4847ex 449 . . . . . 6 (((𝐴 ∈ (ℂ ∖ ℚ) ∧ (𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ) ∧ (𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) → (¬ 𝐶 = 𝐸𝐴 ∈ ℚ))
493, 48mt3d 140 . . . . 5 (((𝐴 ∈ (ℂ ∖ ℚ) ∧ (𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ) ∧ (𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) → 𝐶 = 𝐸)
50 simpl2l 1283 . . . . . . . . 9 (((𝐴 ∈ (ℂ ∖ ℚ) ∧ (𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ) ∧ (𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) → 𝐵 ∈ ℚ)
5150, 23syl 17 . . . . . . . 8 (((𝐴 ∈ (ℂ ∖ ℚ) ∧ (𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ) ∧ (𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) → 𝐵 ∈ ℂ)
5251adantr 472 . . . . . . 7 ((((𝐴 ∈ (ℂ ∖ ℚ) ∧ (𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ) ∧ (𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) ∧ 𝐶 = 𝐸) → 𝐵 ∈ ℂ)
53 simpl3l 1287 . . . . . . . . 9 (((𝐴 ∈ (ℂ ∖ ℚ) ∧ (𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ) ∧ (𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) → 𝐷 ∈ ℚ)
5453, 28syl 17 . . . . . . . 8 (((𝐴 ∈ (ℂ ∖ ℚ) ∧ (𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ) ∧ (𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) → 𝐷 ∈ ℂ)
5554adantr 472 . . . . . . 7 ((((𝐴 ∈ (ℂ ∖ ℚ) ∧ (𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ) ∧ (𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) ∧ 𝐶 = 𝐸) → 𝐷 ∈ ℂ)
56 simpl1 1228 . . . . . . . . . 10 (((𝐴 ∈ (ℂ ∖ ℚ) ∧ (𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ) ∧ (𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) → 𝐴 ∈ (ℂ ∖ ℚ))
5756eldifad 3727 . . . . . . . . 9 (((𝐴 ∈ (ℂ ∖ ℚ) ∧ (𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ) ∧ (𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) → 𝐴 ∈ ℂ)
58 simpl3r 1289 . . . . . . . . . 10 (((𝐴 ∈ (ℂ ∖ ℚ) ∧ (𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ) ∧ (𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) → 𝐸 ∈ ℚ)
5958, 12syl 17 . . . . . . . . 9 (((𝐴 ∈ (ℂ ∖ ℚ) ∧ (𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ) ∧ (𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) → 𝐸 ∈ ℂ)
6057, 59mulcld 10252 . . . . . . . 8 (((𝐴 ∈ (ℂ ∖ ℚ) ∧ (𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ) ∧ (𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) → (𝐴 · 𝐸) ∈ ℂ)
6160adantr 472 . . . . . . 7 ((((𝐴 ∈ (ℂ ∖ ℚ) ∧ (𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ) ∧ (𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) ∧ 𝐶 = 𝐸) → (𝐴 · 𝐸) ∈ ℂ)
62 simpr 479 . . . . . . . . . . 11 ((((𝐴 ∈ (ℂ ∖ ℚ) ∧ (𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ) ∧ (𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) ∧ 𝐶 = 𝐸) → 𝐶 = 𝐸)
6362eqcomd 2766 . . . . . . . . . 10 ((((𝐴 ∈ (ℂ ∖ ℚ) ∧ (𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ) ∧ (𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) ∧ 𝐶 = 𝐸) → 𝐸 = 𝐶)
6463oveq2d 6829 . . . . . . . . 9 ((((𝐴 ∈ (ℂ ∖ ℚ) ∧ (𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ) ∧ (𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) ∧ 𝐶 = 𝐸) → (𝐴 · 𝐸) = (𝐴 · 𝐶))
6564oveq2d 6829 . . . . . . . 8 ((((𝐴 ∈ (ℂ ∖ ℚ) ∧ (𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ) ∧ (𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) ∧ 𝐶 = 𝐸) → (𝐵 + (𝐴 · 𝐸)) = (𝐵 + (𝐴 · 𝐶)))
66 simplr 809 . . . . . . . 8 ((((𝐴 ∈ (ℂ ∖ ℚ) ∧ (𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ) ∧ (𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) ∧ 𝐶 = 𝐸) → (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸)))
6765, 66eqtrd 2794 . . . . . . 7 ((((𝐴 ∈ (ℂ ∖ ℚ) ∧ (𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ) ∧ (𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) ∧ 𝐶 = 𝐸) → (𝐵 + (𝐴 · 𝐸)) = (𝐷 + (𝐴 · 𝐸)))
6852, 55, 61, 67addcan2ad 10434 . . . . . 6 ((((𝐴 ∈ (ℂ ∖ ℚ) ∧ (𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ) ∧ (𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) ∧ 𝐶 = 𝐸) → 𝐵 = 𝐷)
6968ex 449 . . . . 5 (((𝐴 ∈ (ℂ ∖ ℚ) ∧ (𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ) ∧ (𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) → (𝐶 = 𝐸𝐵 = 𝐷))
7049, 69jcai 560 . . . 4 (((𝐴 ∈ (ℂ ∖ ℚ) ∧ (𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ) ∧ (𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) → (𝐶 = 𝐸𝐵 = 𝐷))
7170ancomd 466 . . 3 (((𝐴 ∈ (ℂ ∖ ℚ) ∧ (𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ) ∧ (𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) → (𝐵 = 𝐷𝐶 = 𝐸))
7271ex 449 . 2 ((𝐴 ∈ (ℂ ∖ ℚ) ∧ (𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ) ∧ (𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ)) → ((𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸)) → (𝐵 = 𝐷𝐶 = 𝐸)))
73 id 22 . . 3 (𝐵 = 𝐷𝐵 = 𝐷)
74 oveq2 6821 . . 3 (𝐶 = 𝐸 → (𝐴 · 𝐶) = (𝐴 · 𝐸))
7573, 74oveqan12d 6832 . 2 ((𝐵 = 𝐷𝐶 = 𝐸) → (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸)))
7672, 75impbid1 215 1 ((𝐴 ∈ (ℂ ∖ ℚ) ∧ (𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ) ∧ (𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ)) → ((𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸)) ↔ (𝐵 = 𝐷𝐶 = 𝐸)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 383  w3a 1072   = wceq 1632  wcel 2139  wne 2932  cdif 3712  (class class class)co 6813  cc 10126  0cc0 10128   + caddc 10131   · cmul 10133  cmin 10458   / cdiv 10876  cq 11981
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-om 7231  df-1st 7333  df-2nd 7334  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-er 7911  df-en 8122  df-dom 8123  df-sdom 8124  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-div 10877  df-nn 11213  df-n0 11485  df-z 11570  df-q 11982
This theorem is referenced by:  rmxypairf1o  37978  rmxycomplete  37984  rmxyneg  37987  rmxyadd  37988  rmxy1  37989  rmxy0  37990  jm2.22  38064
  Copyright terms: Public domain W3C validator