MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qdensere Structured version   Visualization version   GIF version

Theorem qdensere 22695
Description: is dense in the standard topology on . (Contributed by NM, 1-Mar-2007.)
Assertion
Ref Expression
qdensere ((cls‘(topGen‘ran (,)))‘ℚ) = ℝ

Proof of Theorem qdensere
Dummy variables 𝑥 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 retop 22687 . . 3 (topGen‘ran (,)) ∈ Top
2 qssre 11912 . . 3 ℚ ⊆ ℝ
3 uniretop 22688 . . . 4 ℝ = (topGen‘ran (,))
43clsss3 20986 . . 3 (((topGen‘ran (,)) ∈ Top ∧ ℚ ⊆ ℝ) → ((cls‘(topGen‘ran (,)))‘ℚ) ⊆ ℝ)
51, 2, 4mp2an 710 . 2 ((cls‘(topGen‘ran (,)))‘ℚ) ⊆ ℝ
6 ioof 12385 . . . . . . 7 (,):(ℝ* × ℝ*)⟶𝒫 ℝ
7 ffn 6158 . . . . . . 7 ((,):(ℝ* × ℝ*)⟶𝒫 ℝ → (,) Fn (ℝ* × ℝ*))
8 ovelrn 6927 . . . . . . 7 ((,) Fn (ℝ* × ℝ*) → (𝑦 ∈ ran (,) ↔ ∃𝑧 ∈ ℝ*𝑤 ∈ ℝ* 𝑦 = (𝑧(,)𝑤)))
96, 7, 8mp2b 10 . . . . . 6 (𝑦 ∈ ran (,) ↔ ∃𝑧 ∈ ℝ*𝑤 ∈ ℝ* 𝑦 = (𝑧(,)𝑤))
10 elioo3g 12318 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ (𝑧(,)𝑤) ↔ ((𝑧 ∈ ℝ*𝑤 ∈ ℝ*𝑥 ∈ ℝ*) ∧ (𝑧 < 𝑥𝑥 < 𝑤)))
1110simplbi 478 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (𝑧(,)𝑤) → (𝑧 ∈ ℝ*𝑤 ∈ ℝ*𝑥 ∈ ℝ*))
1211simp1d 1134 . . . . . . . . . . . . . . 15 (𝑥 ∈ (𝑧(,)𝑤) → 𝑧 ∈ ℝ*)
1312ad2antrr 764 . . . . . . . . . . . . . 14 (((𝑥 ∈ (𝑧(,)𝑤) ∧ 𝑦 ∈ ℚ) ∧ (𝑧 < 𝑦𝑦 < 𝑤)) → 𝑧 ∈ ℝ*)
1411simp2d 1135 . . . . . . . . . . . . . . 15 (𝑥 ∈ (𝑧(,)𝑤) → 𝑤 ∈ ℝ*)
1514ad2antrr 764 . . . . . . . . . . . . . 14 (((𝑥 ∈ (𝑧(,)𝑤) ∧ 𝑦 ∈ ℚ) ∧ (𝑧 < 𝑦𝑦 < 𝑤)) → 𝑤 ∈ ℝ*)
16 qre 11907 . . . . . . . . . . . . . . . 16 (𝑦 ∈ ℚ → 𝑦 ∈ ℝ)
1716ad2antlr 765 . . . . . . . . . . . . . . 15 (((𝑥 ∈ (𝑧(,)𝑤) ∧ 𝑦 ∈ ℚ) ∧ (𝑧 < 𝑦𝑦 < 𝑤)) → 𝑦 ∈ ℝ)
1817rexrd 10202 . . . . . . . . . . . . . 14 (((𝑥 ∈ (𝑧(,)𝑤) ∧ 𝑦 ∈ ℚ) ∧ (𝑧 < 𝑦𝑦 < 𝑤)) → 𝑦 ∈ ℝ*)
1913, 15, 183jca 1379 . . . . . . . . . . . . 13 (((𝑥 ∈ (𝑧(,)𝑤) ∧ 𝑦 ∈ ℚ) ∧ (𝑧 < 𝑦𝑦 < 𝑤)) → (𝑧 ∈ ℝ*𝑤 ∈ ℝ*𝑦 ∈ ℝ*))
20 simpr 479 . . . . . . . . . . . . 13 (((𝑥 ∈ (𝑧(,)𝑤) ∧ 𝑦 ∈ ℚ) ∧ (𝑧 < 𝑦𝑦 < 𝑤)) → (𝑧 < 𝑦𝑦 < 𝑤))
21 elioo3g 12318 . . . . . . . . . . . . 13 (𝑦 ∈ (𝑧(,)𝑤) ↔ ((𝑧 ∈ ℝ*𝑤 ∈ ℝ*𝑦 ∈ ℝ*) ∧ (𝑧 < 𝑦𝑦 < 𝑤)))
2219, 20, 21sylanbrc 701 . . . . . . . . . . . 12 (((𝑥 ∈ (𝑧(,)𝑤) ∧ 𝑦 ∈ ℚ) ∧ (𝑧 < 𝑦𝑦 < 𝑤)) → 𝑦 ∈ (𝑧(,)𝑤))
23 simplr 809 . . . . . . . . . . . 12 (((𝑥 ∈ (𝑧(,)𝑤) ∧ 𝑦 ∈ ℚ) ∧ (𝑧 < 𝑦𝑦 < 𝑤)) → 𝑦 ∈ ℚ)
24 inelcm 4140 . . . . . . . . . . . 12 ((𝑦 ∈ (𝑧(,)𝑤) ∧ 𝑦 ∈ ℚ) → ((𝑧(,)𝑤) ∩ ℚ) ≠ ∅)
2522, 23, 24syl2anc 696 . . . . . . . . . . 11 (((𝑥 ∈ (𝑧(,)𝑤) ∧ 𝑦 ∈ ℚ) ∧ (𝑧 < 𝑦𝑦 < 𝑤)) → ((𝑧(,)𝑤) ∩ ℚ) ≠ ∅)
2611simp3d 1136 . . . . . . . . . . . . 13 (𝑥 ∈ (𝑧(,)𝑤) → 𝑥 ∈ ℝ*)
27 eliooord 12347 . . . . . . . . . . . . . 14 (𝑥 ∈ (𝑧(,)𝑤) → (𝑧 < 𝑥𝑥 < 𝑤))
2827simpld 477 . . . . . . . . . . . . 13 (𝑥 ∈ (𝑧(,)𝑤) → 𝑧 < 𝑥)
2927simprd 482 . . . . . . . . . . . . 13 (𝑥 ∈ (𝑧(,)𝑤) → 𝑥 < 𝑤)
3012, 26, 14, 28, 29xrlttrd 12104 . . . . . . . . . . . 12 (𝑥 ∈ (𝑧(,)𝑤) → 𝑧 < 𝑤)
31 qbtwnxr 12145 . . . . . . . . . . . 12 ((𝑧 ∈ ℝ*𝑤 ∈ ℝ*𝑧 < 𝑤) → ∃𝑦 ∈ ℚ (𝑧 < 𝑦𝑦 < 𝑤))
3212, 14, 30, 31syl3anc 1439 . . . . . . . . . . 11 (𝑥 ∈ (𝑧(,)𝑤) → ∃𝑦 ∈ ℚ (𝑧 < 𝑦𝑦 < 𝑤))
3325, 32r19.29a 3180 . . . . . . . . . 10 (𝑥 ∈ (𝑧(,)𝑤) → ((𝑧(,)𝑤) ∩ ℚ) ≠ ∅)
3433a1i 11 . . . . . . . . 9 (𝑦 = (𝑧(,)𝑤) → (𝑥 ∈ (𝑧(,)𝑤) → ((𝑧(,)𝑤) ∩ ℚ) ≠ ∅))
35 eleq2 2792 . . . . . . . . 9 (𝑦 = (𝑧(,)𝑤) → (𝑥𝑦𝑥 ∈ (𝑧(,)𝑤)))
36 ineq1 3915 . . . . . . . . . 10 (𝑦 = (𝑧(,)𝑤) → (𝑦 ∩ ℚ) = ((𝑧(,)𝑤) ∩ ℚ))
3736neeq1d 2955 . . . . . . . . 9 (𝑦 = (𝑧(,)𝑤) → ((𝑦 ∩ ℚ) ≠ ∅ ↔ ((𝑧(,)𝑤) ∩ ℚ) ≠ ∅))
3834, 35, 373imtr4d 283 . . . . . . . 8 (𝑦 = (𝑧(,)𝑤) → (𝑥𝑦 → (𝑦 ∩ ℚ) ≠ ∅))
3938rexlimivw 3131 . . . . . . 7 (∃𝑤 ∈ ℝ* 𝑦 = (𝑧(,)𝑤) → (𝑥𝑦 → (𝑦 ∩ ℚ) ≠ ∅))
4039rexlimivw 3131 . . . . . 6 (∃𝑧 ∈ ℝ*𝑤 ∈ ℝ* 𝑦 = (𝑧(,)𝑤) → (𝑥𝑦 → (𝑦 ∩ ℚ) ≠ ∅))
419, 40sylbi 207 . . . . 5 (𝑦 ∈ ran (,) → (𝑥𝑦 → (𝑦 ∩ ℚ) ≠ ∅))
4241rgen 3024 . . . 4 𝑦 ∈ ran (,)(𝑥𝑦 → (𝑦 ∩ ℚ) ≠ ∅)
43 eqidd 2725 . . . . 5 (𝑥 ∈ ℝ → (topGen‘ran (,)) = (topGen‘ran (,)))
443a1i 11 . . . . 5 (𝑥 ∈ ℝ → ℝ = (topGen‘ran (,)))
45 retopbas 22686 . . . . . 6 ran (,) ∈ TopBases
4645a1i 11 . . . . 5 (𝑥 ∈ ℝ → ran (,) ∈ TopBases)
472a1i 11 . . . . 5 (𝑥 ∈ ℝ → ℚ ⊆ ℝ)
48 id 22 . . . . 5 (𝑥 ∈ ℝ → 𝑥 ∈ ℝ)
4943, 44, 46, 47, 48elcls3 21010 . . . 4 (𝑥 ∈ ℝ → (𝑥 ∈ ((cls‘(topGen‘ran (,)))‘ℚ) ↔ ∀𝑦 ∈ ran (,)(𝑥𝑦 → (𝑦 ∩ ℚ) ≠ ∅)))
5042, 49mpbiri 248 . . 3 (𝑥 ∈ ℝ → 𝑥 ∈ ((cls‘(topGen‘ran (,)))‘ℚ))
5150ssriv 3713 . 2 ℝ ⊆ ((cls‘(topGen‘ran (,)))‘ℚ)
525, 51eqssi 3725 1 ((cls‘(topGen‘ran (,)))‘ℚ) = ℝ
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1072   = wceq 1596  wcel 2103  wne 2896  wral 3014  wrex 3015  cin 3679  wss 3680  c0 4023  𝒫 cpw 4266   cuni 4544   class class class wbr 4760   × cxp 5216  ran crn 5219   Fn wfn 5996  wf 5997  cfv 6001  (class class class)co 6765  cr 10048  *cxr 10186   < clt 10187  cq 11902  (,)cioo 12289  topGenctg 16221  Topctop 20821  TopBasesctb 20872  clsccl 20945
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1835  ax-4 1850  ax-5 1952  ax-6 2018  ax-7 2054  ax-8 2105  ax-9 2112  ax-10 2132  ax-11 2147  ax-12 2160  ax-13 2355  ax-ext 2704  ax-rep 4879  ax-sep 4889  ax-nul 4897  ax-pow 4948  ax-pr 5011  ax-un 7066  ax-cnex 10105  ax-resscn 10106  ax-1cn 10107  ax-icn 10108  ax-addcl 10109  ax-addrcl 10110  ax-mulcl 10111  ax-mulrcl 10112  ax-mulcom 10113  ax-addass 10114  ax-mulass 10115  ax-distr 10116  ax-i2m1 10117  ax-1ne0 10118  ax-1rid 10119  ax-rnegex 10120  ax-rrecex 10121  ax-cnre 10122  ax-pre-lttri 10123  ax-pre-lttrn 10124  ax-pre-ltadd 10125  ax-pre-mulgt0 10126  ax-pre-sup 10127
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1599  df-ex 1818  df-nf 1823  df-sb 2011  df-eu 2575  df-mo 2576  df-clab 2711  df-cleq 2717  df-clel 2720  df-nfc 2855  df-ne 2897  df-nel 3000  df-ral 3019  df-rex 3020  df-reu 3021  df-rmo 3022  df-rab 3023  df-v 3306  df-sbc 3542  df-csb 3640  df-dif 3683  df-un 3685  df-in 3687  df-ss 3694  df-pss 3696  df-nul 4024  df-if 4195  df-pw 4268  df-sn 4286  df-pr 4288  df-tp 4290  df-op 4292  df-uni 4545  df-int 4584  df-iun 4630  df-iin 4631  df-br 4761  df-opab 4821  df-mpt 4838  df-tr 4861  df-id 5128  df-eprel 5133  df-po 5139  df-so 5140  df-fr 5177  df-we 5179  df-xp 5224  df-rel 5225  df-cnv 5226  df-co 5227  df-dm 5228  df-rn 5229  df-res 5230  df-ima 5231  df-pred 5793  df-ord 5839  df-on 5840  df-lim 5841  df-suc 5842  df-iota 5964  df-fun 6003  df-fn 6004  df-f 6005  df-f1 6006  df-fo 6007  df-f1o 6008  df-fv 6009  df-riota 6726  df-ov 6768  df-oprab 6769  df-mpt2 6770  df-om 7183  df-1st 7285  df-2nd 7286  df-wrecs 7527  df-recs 7588  df-rdg 7626  df-er 7862  df-en 8073  df-dom 8074  df-sdom 8075  df-sup 8464  df-inf 8465  df-pnf 10189  df-mnf 10190  df-xr 10191  df-ltxr 10192  df-le 10193  df-sub 10381  df-neg 10382  df-div 10798  df-nn 11134  df-n0 11406  df-z 11491  df-uz 11801  df-q 11903  df-ioo 12293  df-topgen 16227  df-top 20822  df-bases 20873  df-cld 20946  df-ntr 20947  df-cls 20948
This theorem is referenced by:  qdensere2  22722  resscdrg  23275  ipasslem8  27922  rrhcn  30271  rrhre  30295
  Copyright terms: Public domain W3C validator