MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pythag Structured version   Visualization version   GIF version

Theorem pythag 24768
Description: Pythagorean theorem. Given three distinct points A, B, and C that form a right triangle (with the right angle at C), prove a relationship between their segment lengths. This theorem is expressed using the complex number plane as a plane, where 𝐹 is the signed angle construct (as used in ang180 24765), 𝑋 is the distance of line segment BC, 𝑌 is the distance of line segment AC, 𝑍 is the distance of line segment AB (the hypotenuse), and 𝑂 is the signed right angle m/_ BCA. We use the law of cosines lawcos 24767 to prove this, along with simple trigonometry facts like coshalfpi 24442 and cosneg 15083. (Contributed by David A. Wheeler, 13-Jun-2015.)
Hypotheses
Ref Expression
lawcos.1 𝐹 = (𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (ℑ‘(log‘(𝑦 / 𝑥))))
lawcos.2 𝑋 = (abs‘(𝐵𝐶))
lawcos.3 𝑌 = (abs‘(𝐴𝐶))
lawcos.4 𝑍 = (abs‘(𝐴𝐵))
lawcos.5 𝑂 = ((𝐵𝐶)𝐹(𝐴𝐶))
Assertion
Ref Expression
pythag (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶) ∧ 𝑂 ∈ {(π / 2), -(π / 2)}) → (𝑍↑2) = ((𝑋↑2) + (𝑌↑2)))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦
Allowed substitution hints:   𝐹(𝑥,𝑦)   𝑂(𝑥,𝑦)   𝑋(𝑥,𝑦)   𝑌(𝑥,𝑦)   𝑍(𝑥,𝑦)

Proof of Theorem pythag
StepHypRef Expression
1 lawcos.1 . . . 4 𝐹 = (𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (ℑ‘(log‘(𝑦 / 𝑥))))
2 lawcos.2 . . . 4 𝑋 = (abs‘(𝐵𝐶))
3 lawcos.3 . . . 4 𝑌 = (abs‘(𝐴𝐶))
4 lawcos.4 . . . 4 𝑍 = (abs‘(𝐴𝐵))
5 lawcos.5 . . . 4 𝑂 = ((𝐵𝐶)𝐹(𝐴𝐶))
61, 2, 3, 4, 5lawcos 24767 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶)) → (𝑍↑2) = (((𝑋↑2) + (𝑌↑2)) − (2 · ((𝑋 · 𝑌) · (cos‘𝑂)))))
763adant3 1126 . 2 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶) ∧ 𝑂 ∈ {(π / 2), -(π / 2)}) → (𝑍↑2) = (((𝑋↑2) + (𝑌↑2)) − (2 · ((𝑋 · 𝑌) · (cos‘𝑂)))))
8 elpri 4338 . . . . . . . . 9 (𝑂 ∈ {(π / 2), -(π / 2)} → (𝑂 = (π / 2) ∨ 𝑂 = -(π / 2)))
9 fveq2 6333 . . . . . . . . . . 11 (𝑂 = (π / 2) → (cos‘𝑂) = (cos‘(π / 2)))
10 coshalfpi 24442 . . . . . . . . . . 11 (cos‘(π / 2)) = 0
119, 10syl6eq 2821 . . . . . . . . . 10 (𝑂 = (π / 2) → (cos‘𝑂) = 0)
12 fveq2 6333 . . . . . . . . . . 11 (𝑂 = -(π / 2) → (cos‘𝑂) = (cos‘-(π / 2)))
13 cosneghalfpi 24443 . . . . . . . . . . 11 (cos‘-(π / 2)) = 0
1412, 13syl6eq 2821 . . . . . . . . . 10 (𝑂 = -(π / 2) → (cos‘𝑂) = 0)
1511, 14jaoi 846 . . . . . . . . 9 ((𝑂 = (π / 2) ∨ 𝑂 = -(π / 2)) → (cos‘𝑂) = 0)
168, 15syl 17 . . . . . . . 8 (𝑂 ∈ {(π / 2), -(π / 2)} → (cos‘𝑂) = 0)
17163ad2ant3 1129 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶) ∧ 𝑂 ∈ {(π / 2), -(π / 2)}) → (cos‘𝑂) = 0)
1817oveq2d 6812 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶) ∧ 𝑂 ∈ {(π / 2), -(π / 2)}) → ((𝑋 · 𝑌) · (cos‘𝑂)) = ((𝑋 · 𝑌) · 0))
19 subcl 10486 . . . . . . . . . . . . 13 ((𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐵𝐶) ∈ ℂ)
20193adant1 1124 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐵𝐶) ∈ ℂ)
21203ad2ant1 1127 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶) ∧ 𝑂 ∈ {(π / 2), -(π / 2)}) → (𝐵𝐶) ∈ ℂ)
2221abscld 14383 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶) ∧ 𝑂 ∈ {(π / 2), -(π / 2)}) → (abs‘(𝐵𝐶)) ∈ ℝ)
2322recnd 10274 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶) ∧ 𝑂 ∈ {(π / 2), -(π / 2)}) → (abs‘(𝐵𝐶)) ∈ ℂ)
242, 23syl5eqel 2854 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶) ∧ 𝑂 ∈ {(π / 2), -(π / 2)}) → 𝑋 ∈ ℂ)
25 subcl 10486 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴𝐶) ∈ ℂ)
26253adant2 1125 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴𝐶) ∈ ℂ)
27263ad2ant1 1127 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶) ∧ 𝑂 ∈ {(π / 2), -(π / 2)}) → (𝐴𝐶) ∈ ℂ)
2827abscld 14383 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶) ∧ 𝑂 ∈ {(π / 2), -(π / 2)}) → (abs‘(𝐴𝐶)) ∈ ℝ)
2928recnd 10274 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶) ∧ 𝑂 ∈ {(π / 2), -(π / 2)}) → (abs‘(𝐴𝐶)) ∈ ℂ)
303, 29syl5eqel 2854 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶) ∧ 𝑂 ∈ {(π / 2), -(π / 2)}) → 𝑌 ∈ ℂ)
3124, 30mulcld 10266 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶) ∧ 𝑂 ∈ {(π / 2), -(π / 2)}) → (𝑋 · 𝑌) ∈ ℂ)
3231mul01d 10441 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶) ∧ 𝑂 ∈ {(π / 2), -(π / 2)}) → ((𝑋 · 𝑌) · 0) = 0)
3318, 32eqtrd 2805 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶) ∧ 𝑂 ∈ {(π / 2), -(π / 2)}) → ((𝑋 · 𝑌) · (cos‘𝑂)) = 0)
3433oveq2d 6812 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶) ∧ 𝑂 ∈ {(π / 2), -(π / 2)}) → (2 · ((𝑋 · 𝑌) · (cos‘𝑂))) = (2 · 0))
35 2t0e0 11390 . . . 4 (2 · 0) = 0
3634, 35syl6eq 2821 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶) ∧ 𝑂 ∈ {(π / 2), -(π / 2)}) → (2 · ((𝑋 · 𝑌) · (cos‘𝑂))) = 0)
3736oveq2d 6812 . 2 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶) ∧ 𝑂 ∈ {(π / 2), -(π / 2)}) → (((𝑋↑2) + (𝑌↑2)) − (2 · ((𝑋 · 𝑌) · (cos‘𝑂)))) = (((𝑋↑2) + (𝑌↑2)) − 0))
3824sqcld 13213 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶) ∧ 𝑂 ∈ {(π / 2), -(π / 2)}) → (𝑋↑2) ∈ ℂ)
3930sqcld 13213 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶) ∧ 𝑂 ∈ {(π / 2), -(π / 2)}) → (𝑌↑2) ∈ ℂ)
4038, 39addcld 10265 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶) ∧ 𝑂 ∈ {(π / 2), -(π / 2)}) → ((𝑋↑2) + (𝑌↑2)) ∈ ℂ)
4140subid1d 10587 . 2 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶) ∧ 𝑂 ∈ {(π / 2), -(π / 2)}) → (((𝑋↑2) + (𝑌↑2)) − 0) = ((𝑋↑2) + (𝑌↑2)))
427, 37, 413eqtrd 2809 1 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶) ∧ 𝑂 ∈ {(π / 2), -(π / 2)}) → (𝑍↑2) = ((𝑋↑2) + (𝑌↑2)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382  wo 836  w3a 1071   = wceq 1631  wcel 2145  wne 2943  cdif 3720  {csn 4317  {cpr 4319  cfv 6030  (class class class)co 6796  cmpt2 6798  cc 10140  0cc0 10142   + caddc 10145   · cmul 10147  cmin 10472  -cneg 10473   / cdiv 10890  2c2 11276  cexp 13067  cim 14046  abscabs 14182  cosccos 15001  πcpi 15003  logclog 24522
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4905  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7100  ax-inf2 8706  ax-cnex 10198  ax-resscn 10199  ax-1cn 10200  ax-icn 10201  ax-addcl 10202  ax-addrcl 10203  ax-mulcl 10204  ax-mulrcl 10205  ax-mulcom 10206  ax-addass 10207  ax-mulass 10208  ax-distr 10209  ax-i2m1 10210  ax-1ne0 10211  ax-1rid 10212  ax-rnegex 10213  ax-rrecex 10214  ax-cnre 10215  ax-pre-lttri 10216  ax-pre-lttrn 10217  ax-pre-ltadd 10218  ax-pre-mulgt0 10219  ax-pre-sup 10220  ax-addf 10221  ax-mulf 10222
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-fal 1637  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-tp 4322  df-op 4324  df-uni 4576  df-int 4613  df-iun 4657  df-iin 4658  df-br 4788  df-opab 4848  df-mpt 4865  df-tr 4888  df-id 5158  df-eprel 5163  df-po 5171  df-so 5172  df-fr 5209  df-se 5210  df-we 5211  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-pred 5822  df-ord 5868  df-on 5869  df-lim 5870  df-suc 5871  df-iota 5993  df-fun 6032  df-fn 6033  df-f 6034  df-f1 6035  df-fo 6036  df-f1o 6037  df-fv 6038  df-isom 6039  df-riota 6757  df-ov 6799  df-oprab 6800  df-mpt2 6801  df-of 7048  df-om 7217  df-1st 7319  df-2nd 7320  df-supp 7451  df-wrecs 7563  df-recs 7625  df-rdg 7663  df-1o 7717  df-2o 7718  df-oadd 7721  df-er 7900  df-map 8015  df-pm 8016  df-ixp 8067  df-en 8114  df-dom 8115  df-sdom 8116  df-fin 8117  df-fsupp 8436  df-fi 8477  df-sup 8508  df-inf 8509  df-oi 8575  df-card 8969  df-cda 9196  df-pnf 10282  df-mnf 10283  df-xr 10284  df-ltxr 10285  df-le 10286  df-sub 10474  df-neg 10475  df-div 10891  df-nn 11227  df-2 11285  df-3 11286  df-4 11287  df-5 11288  df-6 11289  df-7 11290  df-8 11291  df-9 11292  df-n0 11500  df-z 11585  df-dec 11701  df-uz 11894  df-q 11997  df-rp 12036  df-xneg 12151  df-xadd 12152  df-xmul 12153  df-ioo 12384  df-ioc 12385  df-ico 12386  df-icc 12387  df-fz 12534  df-fzo 12674  df-fl 12801  df-mod 12877  df-seq 13009  df-exp 13068  df-fac 13265  df-bc 13294  df-hash 13322  df-shft 14015  df-cj 14047  df-re 14048  df-im 14049  df-sqrt 14183  df-abs 14184  df-limsup 14410  df-clim 14427  df-rlim 14428  df-sum 14625  df-ef 15004  df-sin 15006  df-cos 15007  df-pi 15009  df-struct 16066  df-ndx 16067  df-slot 16068  df-base 16070  df-sets 16071  df-ress 16072  df-plusg 16162  df-mulr 16163  df-starv 16164  df-sca 16165  df-vsca 16166  df-ip 16167  df-tset 16168  df-ple 16169  df-ds 16172  df-unif 16173  df-hom 16174  df-cco 16175  df-rest 16291  df-topn 16292  df-0g 16310  df-gsum 16311  df-topgen 16312  df-pt 16313  df-prds 16316  df-xrs 16370  df-qtop 16375  df-imas 16376  df-xps 16378  df-mre 16454  df-mrc 16455  df-acs 16457  df-mgm 17450  df-sgrp 17492  df-mnd 17503  df-submnd 17544  df-mulg 17749  df-cntz 17957  df-cmn 18402  df-psmet 19953  df-xmet 19954  df-met 19955  df-bl 19956  df-mopn 19957  df-fbas 19958  df-fg 19959  df-cnfld 19962  df-top 20919  df-topon 20936  df-topsp 20958  df-bases 20971  df-cld 21044  df-ntr 21045  df-cls 21046  df-nei 21123  df-lp 21161  df-perf 21162  df-cn 21252  df-cnp 21253  df-haus 21340  df-tx 21586  df-hmeo 21779  df-fil 21870  df-fm 21962  df-flim 21963  df-flf 21964  df-xms 22345  df-ms 22346  df-tms 22347  df-cncf 22901  df-limc 23850  df-dv 23851  df-log 24524
This theorem is referenced by:  chordthmlem3  24782
  Copyright terms: Public domain W3C validator