![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pwwf | Structured version Visualization version GIF version |
Description: A power set is well-founded iff the base set is. (Contributed by Mario Carneiro, 8-Jun-2013.) (Revised by Mario Carneiro, 16-Nov-2014.) |
Ref | Expression |
---|---|
pwwf | ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) ↔ 𝒫 𝐴 ∈ ∪ (𝑅1 “ On)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | r1rankidb 8705 | . . . . . . 7 ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → 𝐴 ⊆ (𝑅1‘(rank‘𝐴))) | |
2 | sspwb 4947 | . . . . . . 7 ⊢ (𝐴 ⊆ (𝑅1‘(rank‘𝐴)) ↔ 𝒫 𝐴 ⊆ 𝒫 (𝑅1‘(rank‘𝐴))) | |
3 | 1, 2 | sylib 208 | . . . . . 6 ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → 𝒫 𝐴 ⊆ 𝒫 (𝑅1‘(rank‘𝐴))) |
4 | rankdmr1 8702 | . . . . . . 7 ⊢ (rank‘𝐴) ∈ dom 𝑅1 | |
5 | r1sucg 8670 | . . . . . . 7 ⊢ ((rank‘𝐴) ∈ dom 𝑅1 → (𝑅1‘suc (rank‘𝐴)) = 𝒫 (𝑅1‘(rank‘𝐴))) | |
6 | 4, 5 | ax-mp 5 | . . . . . 6 ⊢ (𝑅1‘suc (rank‘𝐴)) = 𝒫 (𝑅1‘(rank‘𝐴)) |
7 | 3, 6 | syl6sseqr 3685 | . . . . 5 ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → 𝒫 𝐴 ⊆ (𝑅1‘suc (rank‘𝐴))) |
8 | fvex 6239 | . . . . . 6 ⊢ (𝑅1‘suc (rank‘𝐴)) ∈ V | |
9 | 8 | elpw2 4858 | . . . . 5 ⊢ (𝒫 𝐴 ∈ 𝒫 (𝑅1‘suc (rank‘𝐴)) ↔ 𝒫 𝐴 ⊆ (𝑅1‘suc (rank‘𝐴))) |
10 | 7, 9 | sylibr 224 | . . . 4 ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → 𝒫 𝐴 ∈ 𝒫 (𝑅1‘suc (rank‘𝐴))) |
11 | r1funlim 8667 | . . . . . . . 8 ⊢ (Fun 𝑅1 ∧ Lim dom 𝑅1) | |
12 | 11 | simpri 477 | . . . . . . 7 ⊢ Lim dom 𝑅1 |
13 | limsuc 7091 | . . . . . . 7 ⊢ (Lim dom 𝑅1 → ((rank‘𝐴) ∈ dom 𝑅1 ↔ suc (rank‘𝐴) ∈ dom 𝑅1)) | |
14 | 12, 13 | ax-mp 5 | . . . . . 6 ⊢ ((rank‘𝐴) ∈ dom 𝑅1 ↔ suc (rank‘𝐴) ∈ dom 𝑅1) |
15 | 4, 14 | mpbi 220 | . . . . 5 ⊢ suc (rank‘𝐴) ∈ dom 𝑅1 |
16 | r1sucg 8670 | . . . . 5 ⊢ (suc (rank‘𝐴) ∈ dom 𝑅1 → (𝑅1‘suc suc (rank‘𝐴)) = 𝒫 (𝑅1‘suc (rank‘𝐴))) | |
17 | 15, 16 | ax-mp 5 | . . . 4 ⊢ (𝑅1‘suc suc (rank‘𝐴)) = 𝒫 (𝑅1‘suc (rank‘𝐴)) |
18 | 10, 17 | syl6eleqr 2741 | . . 3 ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → 𝒫 𝐴 ∈ (𝑅1‘suc suc (rank‘𝐴))) |
19 | r1elwf 8697 | . . 3 ⊢ (𝒫 𝐴 ∈ (𝑅1‘suc suc (rank‘𝐴)) → 𝒫 𝐴 ∈ ∪ (𝑅1 “ On)) | |
20 | 18, 19 | syl 17 | . 2 ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → 𝒫 𝐴 ∈ ∪ (𝑅1 “ On)) |
21 | r1elssi 8706 | . . 3 ⊢ (𝒫 𝐴 ∈ ∪ (𝑅1 “ On) → 𝒫 𝐴 ⊆ ∪ (𝑅1 “ On)) | |
22 | pwexr 7016 | . . . 4 ⊢ (𝒫 𝐴 ∈ ∪ (𝑅1 “ On) → 𝐴 ∈ V) | |
23 | pwidg 4206 | . . . 4 ⊢ (𝐴 ∈ V → 𝐴 ∈ 𝒫 𝐴) | |
24 | 22, 23 | syl 17 | . . 3 ⊢ (𝒫 𝐴 ∈ ∪ (𝑅1 “ On) → 𝐴 ∈ 𝒫 𝐴) |
25 | 21, 24 | sseldd 3637 | . 2 ⊢ (𝒫 𝐴 ∈ ∪ (𝑅1 “ On) → 𝐴 ∈ ∪ (𝑅1 “ On)) |
26 | 20, 25 | impbii 199 | 1 ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) ↔ 𝒫 𝐴 ∈ ∪ (𝑅1 “ On)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 = wceq 1523 ∈ wcel 2030 Vcvv 3231 ⊆ wss 3607 𝒫 cpw 4191 ∪ cuni 4468 dom cdm 5143 “ cima 5146 Oncon0 5761 Lim wlim 5762 suc csuc 5763 Fun wfun 5920 ‘cfv 5926 𝑅1cr1 8663 rankcrnk 8664 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-ral 2946 df-rex 2947 df-reu 2948 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-int 4508 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-om 7108 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-r1 8665 df-rank 8666 |
This theorem is referenced by: snwf 8710 uniwf 8720 rankpwi 8724 r1pw 8746 r1pwcl 8748 dfac12r 9006 wfgru 9676 |
Copyright terms: Public domain | W3C validator |