![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pwunss | Structured version Visualization version GIF version |
Description: The power class of the union of two classes includes the union of their power classes. Exercise 4.12(k) of [Mendelson] p. 235. (Contributed by NM, 23-Nov-2003.) |
Ref | Expression |
---|---|
pwunss | ⊢ (𝒫 𝐴 ∪ 𝒫 𝐵) ⊆ 𝒫 (𝐴 ∪ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssun 3935 | . . 3 ⊢ ((𝑥 ⊆ 𝐴 ∨ 𝑥 ⊆ 𝐵) → 𝑥 ⊆ (𝐴 ∪ 𝐵)) | |
2 | elun 3896 | . . . 4 ⊢ (𝑥 ∈ (𝒫 𝐴 ∪ 𝒫 𝐵) ↔ (𝑥 ∈ 𝒫 𝐴 ∨ 𝑥 ∈ 𝒫 𝐵)) | |
3 | selpw 4309 | . . . . 5 ⊢ (𝑥 ∈ 𝒫 𝐴 ↔ 𝑥 ⊆ 𝐴) | |
4 | selpw 4309 | . . . . 5 ⊢ (𝑥 ∈ 𝒫 𝐵 ↔ 𝑥 ⊆ 𝐵) | |
5 | 3, 4 | orbi12i 544 | . . . 4 ⊢ ((𝑥 ∈ 𝒫 𝐴 ∨ 𝑥 ∈ 𝒫 𝐵) ↔ (𝑥 ⊆ 𝐴 ∨ 𝑥 ⊆ 𝐵)) |
6 | 2, 5 | bitri 264 | . . 3 ⊢ (𝑥 ∈ (𝒫 𝐴 ∪ 𝒫 𝐵) ↔ (𝑥 ⊆ 𝐴 ∨ 𝑥 ⊆ 𝐵)) |
7 | selpw 4309 | . . 3 ⊢ (𝑥 ∈ 𝒫 (𝐴 ∪ 𝐵) ↔ 𝑥 ⊆ (𝐴 ∪ 𝐵)) | |
8 | 1, 6, 7 | 3imtr4i 281 | . 2 ⊢ (𝑥 ∈ (𝒫 𝐴 ∪ 𝒫 𝐵) → 𝑥 ∈ 𝒫 (𝐴 ∪ 𝐵)) |
9 | 8 | ssriv 3748 | 1 ⊢ (𝒫 𝐴 ∪ 𝒫 𝐵) ⊆ 𝒫 (𝐴 ∪ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ∨ wo 382 ∈ wcel 2139 ∪ cun 3713 ⊆ wss 3715 𝒫 cpw 4302 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-v 3342 df-un 3720 df-in 3722 df-ss 3729 df-pw 4304 |
This theorem is referenced by: pwundif 5171 pwun 5172 |
Copyright terms: Public domain | W3C validator |