![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pwuninel2 | Structured version Visualization version GIF version |
Description: Direct proof of pwuninel 7562 avoiding functions and thus several ZF axioms. (Contributed by Stefan O'Rear, 22-Feb-2015.) |
Ref | Expression |
---|---|
pwuninel2 | ⊢ (∪ 𝐴 ∈ 𝑉 → ¬ 𝒫 ∪ 𝐴 ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pwnss 4971 | . 2 ⊢ (∪ 𝐴 ∈ 𝑉 → ¬ 𝒫 ∪ 𝐴 ⊆ ∪ 𝐴) | |
2 | elssuni 4611 | . 2 ⊢ (𝒫 ∪ 𝐴 ∈ 𝐴 → 𝒫 ∪ 𝐴 ⊆ ∪ 𝐴) | |
3 | 1, 2 | nsyl 135 | 1 ⊢ (∪ 𝐴 ∈ 𝑉 → ¬ 𝒫 ∪ 𝐴 ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2131 ⊆ wss 3707 𝒫 cpw 4294 ∪ cuni 4580 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1863 ax-4 1878 ax-5 1980 ax-6 2046 ax-7 2082 ax-9 2140 ax-10 2160 ax-11 2175 ax-12 2188 ax-13 2383 ax-ext 2732 ax-sep 4925 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1627 df-ex 1846 df-nf 1851 df-sb 2039 df-clab 2739 df-cleq 2745 df-clel 2748 df-nfc 2883 df-nel 3028 df-rab 3051 df-v 3334 df-in 3714 df-ss 3721 df-pw 4296 df-uni 4581 |
This theorem is referenced by: pwuninel 7562 |
Copyright terms: Public domain | W3C validator |