Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwuninel2 Structured version   Visualization version   GIF version

Theorem pwuninel2 7561
 Description: Direct proof of pwuninel 7562 avoiding functions and thus several ZF axioms. (Contributed by Stefan O'Rear, 22-Feb-2015.)
Assertion
Ref Expression
pwuninel2 ( 𝐴𝑉 → ¬ 𝒫 𝐴𝐴)

Proof of Theorem pwuninel2
StepHypRef Expression
1 pwnss 4971 . 2 ( 𝐴𝑉 → ¬ 𝒫 𝐴 𝐴)
2 elssuni 4611 . 2 (𝒫 𝐴𝐴 → 𝒫 𝐴 𝐴)
31, 2nsyl 135 1 ( 𝐴𝑉 → ¬ 𝒫 𝐴𝐴)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∈ wcel 2131   ⊆ wss 3707  𝒫 cpw 4294  ∪ cuni 4580 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1863  ax-4 1878  ax-5 1980  ax-6 2046  ax-7 2082  ax-9 2140  ax-10 2160  ax-11 2175  ax-12 2188  ax-13 2383  ax-ext 2732  ax-sep 4925 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-tru 1627  df-ex 1846  df-nf 1851  df-sb 2039  df-clab 2739  df-cleq 2745  df-clel 2748  df-nfc 2883  df-nel 3028  df-rab 3051  df-v 3334  df-in 3714  df-ss 3721  df-pw 4296  df-uni 4581 This theorem is referenced by:  pwuninel  7562
 Copyright terms: Public domain W3C validator