Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwuninel Structured version   Visualization version   GIF version

Theorem pwuninel 7553
 Description: The power set of the union of a set does not belong to the set. This theorem provides a way of constructing a new set that doesn't belong to a given set. See also pwuninel2 7552. (Contributed by NM, 27-Jun-2008.) (Proof shortened by Mario Carneiro, 23-Dec-2016.)
Assertion
Ref Expression
pwuninel ¬ 𝒫 𝐴𝐴

Proof of Theorem pwuninel
StepHypRef Expression
1 pwexr 7121 . . 3 (𝒫 𝐴𝐴 𝐴 ∈ V)
2 pwuninel2 7552 . . 3 ( 𝐴 ∈ V → ¬ 𝒫 𝐴𝐴)
31, 2syl 17 . 2 (𝒫 𝐴𝐴 → ¬ 𝒫 𝐴𝐴)
4 id 22 . 2 (¬ 𝒫 𝐴𝐴 → ¬ 𝒫 𝐴𝐴)
53, 4pm2.61i 176 1 ¬ 𝒫 𝐴𝐴
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   ∈ wcel 2145  Vcvv 3351  𝒫 cpw 4297  ∪ cuni 4574 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4915  ax-nul 4923  ax-pr 5034  ax-un 7096 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-nel 3047  df-rex 3067  df-rab 3070  df-v 3353  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-pw 4299  df-sn 4317  df-pr 4319  df-uni 4575 This theorem is referenced by:  undefnel2  7555  disjen  8273  pnfnre  10283  kelac2lem  38160  kelac2  38161
 Copyright terms: Public domain W3C validator