![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pwuni | Structured version Visualization version GIF version |
Description: A class is a subclass of the power class of its union. Exercise 6(b) of [Enderton] p. 38. (Contributed by NM, 14-Oct-1996.) |
Ref | Expression |
---|---|
pwuni | ⊢ 𝐴 ⊆ 𝒫 ∪ 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elssuni 4611 | . . 3 ⊢ (𝑥 ∈ 𝐴 → 𝑥 ⊆ ∪ 𝐴) | |
2 | selpw 4301 | . . 3 ⊢ (𝑥 ∈ 𝒫 ∪ 𝐴 ↔ 𝑥 ⊆ ∪ 𝐴) | |
3 | 1, 2 | sylibr 224 | . 2 ⊢ (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝒫 ∪ 𝐴) |
4 | 3 | ssriv 3740 | 1 ⊢ 𝐴 ⊆ 𝒫 ∪ 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2131 ⊆ wss 3707 𝒫 cpw 4294 ∪ cuni 4580 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1863 ax-4 1878 ax-5 1980 ax-6 2046 ax-7 2082 ax-9 2140 ax-10 2160 ax-11 2175 ax-12 2188 ax-13 2383 ax-ext 2732 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1627 df-ex 1846 df-nf 1851 df-sb 2039 df-clab 2739 df-cleq 2745 df-clel 2748 df-nfc 2883 df-v 3334 df-in 3714 df-ss 3721 df-pw 4296 df-uni 4581 |
This theorem is referenced by: uniexr 7129 fipwuni 8489 uniwf 8847 rankuni 8891 rankc2 8899 rankxplim 8907 fin23lem17 9344 axcclem 9463 grurn 9807 istopon 20911 eltg3i 20959 cmpfi 21405 hmphdis 21793 ptcmpfi 21810 fbssfi 21834 mopnfss 22441 pliguhgr 27641 shsspwh 28404 circtopn 30205 hasheuni 30448 issgon 30487 sigaclci 30496 sigagenval 30504 dmsigagen 30508 imambfm 30625 salgenval 41036 salgenn0 41044 caragensspw 41221 |
Copyright terms: Public domain | W3C validator |