![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pwundif | Structured version Visualization version GIF version |
Description: Break up the power class of a union into a union of smaller classes. (Contributed by NM, 25-Mar-2007.) (Proof shortened by Thierry Arnoux, 20-Dec-2016.) |
Ref | Expression |
---|---|
pwundif | ⊢ 𝒫 (𝐴 ∪ 𝐵) = ((𝒫 (𝐴 ∪ 𝐵) ∖ 𝒫 𝐴) ∪ 𝒫 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | undif1 4187 | . 2 ⊢ ((𝒫 (𝐴 ∪ 𝐵) ∖ 𝒫 𝐴) ∪ 𝒫 𝐴) = (𝒫 (𝐴 ∪ 𝐵) ∪ 𝒫 𝐴) | |
2 | pwunss 5169 | . . . . 5 ⊢ (𝒫 𝐴 ∪ 𝒫 𝐵) ⊆ 𝒫 (𝐴 ∪ 𝐵) | |
3 | unss 3930 | . . . . 5 ⊢ ((𝒫 𝐴 ⊆ 𝒫 (𝐴 ∪ 𝐵) ∧ 𝒫 𝐵 ⊆ 𝒫 (𝐴 ∪ 𝐵)) ↔ (𝒫 𝐴 ∪ 𝒫 𝐵) ⊆ 𝒫 (𝐴 ∪ 𝐵)) | |
4 | 2, 3 | mpbir 221 | . . . 4 ⊢ (𝒫 𝐴 ⊆ 𝒫 (𝐴 ∪ 𝐵) ∧ 𝒫 𝐵 ⊆ 𝒫 (𝐴 ∪ 𝐵)) |
5 | 4 | simpli 476 | . . 3 ⊢ 𝒫 𝐴 ⊆ 𝒫 (𝐴 ∪ 𝐵) |
6 | ssequn2 3929 | . . 3 ⊢ (𝒫 𝐴 ⊆ 𝒫 (𝐴 ∪ 𝐵) ↔ (𝒫 (𝐴 ∪ 𝐵) ∪ 𝒫 𝐴) = 𝒫 (𝐴 ∪ 𝐵)) | |
7 | 5, 6 | mpbi 220 | . 2 ⊢ (𝒫 (𝐴 ∪ 𝐵) ∪ 𝒫 𝐴) = 𝒫 (𝐴 ∪ 𝐵) |
8 | 1, 7 | eqtr2i 2783 | 1 ⊢ 𝒫 (𝐴 ∪ 𝐵) = ((𝒫 (𝐴 ∪ 𝐵) ∖ 𝒫 𝐴) ∪ 𝒫 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 383 = wceq 1632 ∖ cdif 3712 ∪ cun 3713 ⊆ wss 3715 𝒫 cpw 4302 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ral 3055 df-rab 3059 df-v 3342 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-pw 4304 |
This theorem is referenced by: pwfilem 8427 |
Copyright terms: Public domain | W3C validator |