Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwsvscafval Structured version   Visualization version   GIF version

Theorem pwsvscafval 16361
 Description: Scalar multiplication in a structure power is pointwise. (Contributed by Mario Carneiro, 11-Jan-2015.)
Hypotheses
Ref Expression
pwsvscaval.y 𝑌 = (𝑅s 𝐼)
pwsvscaval.b 𝐵 = (Base‘𝑌)
pwsvscaval.s · = ( ·𝑠𝑅)
pwsvscaval.t = ( ·𝑠𝑌)
pwsvscaval.f 𝐹 = (Scalar‘𝑅)
pwsvscaval.k 𝐾 = (Base‘𝐹)
pwsvscaval.r (𝜑𝑅𝑉)
pwsvscaval.i (𝜑𝐼𝑊)
pwsvscaval.a (𝜑𝐴𝐾)
pwsvscaval.x (𝜑𝑋𝐵)
Assertion
Ref Expression
pwsvscafval (𝜑 → (𝐴 𝑋) = ((𝐼 × {𝐴}) ∘𝑓 · 𝑋))

Proof of Theorem pwsvscafval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 pwsvscaval.t . . . 4 = ( ·𝑠𝑌)
2 pwsvscaval.r . . . . . 6 (𝜑𝑅𝑉)
3 pwsvscaval.i . . . . . 6 (𝜑𝐼𝑊)
4 pwsvscaval.y . . . . . . 7 𝑌 = (𝑅s 𝐼)
5 pwsvscaval.f . . . . . . 7 𝐹 = (Scalar‘𝑅)
64, 5pwsval 16353 . . . . . 6 ((𝑅𝑉𝐼𝑊) → 𝑌 = (𝐹Xs(𝐼 × {𝑅})))
72, 3, 6syl2anc 565 . . . . 5 (𝜑𝑌 = (𝐹Xs(𝐼 × {𝑅})))
87fveq2d 6336 . . . 4 (𝜑 → ( ·𝑠𝑌) = ( ·𝑠 ‘(𝐹Xs(𝐼 × {𝑅}))))
91, 8syl5eq 2816 . . 3 (𝜑 = ( ·𝑠 ‘(𝐹Xs(𝐼 × {𝑅}))))
109oveqd 6809 . 2 (𝜑 → (𝐴 𝑋) = (𝐴( ·𝑠 ‘(𝐹Xs(𝐼 × {𝑅})))𝑋))
11 eqid 2770 . . 3 (𝐹Xs(𝐼 × {𝑅})) = (𝐹Xs(𝐼 × {𝑅}))
12 eqid 2770 . . 3 (Base‘(𝐹Xs(𝐼 × {𝑅}))) = (Base‘(𝐹Xs(𝐼 × {𝑅})))
13 eqid 2770 . . 3 ( ·𝑠 ‘(𝐹Xs(𝐼 × {𝑅}))) = ( ·𝑠 ‘(𝐹Xs(𝐼 × {𝑅})))
14 pwsvscaval.k . . 3 𝐾 = (Base‘𝐹)
15 fvex 6342 . . . . 5 (Scalar‘𝑅) ∈ V
165, 15eqeltri 2845 . . . 4 𝐹 ∈ V
1716a1i 11 . . 3 (𝜑𝐹 ∈ V)
18 fnconstg 6233 . . . 4 (𝑅𝑉 → (𝐼 × {𝑅}) Fn 𝐼)
192, 18syl 17 . . 3 (𝜑 → (𝐼 × {𝑅}) Fn 𝐼)
20 pwsvscaval.a . . 3 (𝜑𝐴𝐾)
21 pwsvscaval.x . . . 4 (𝜑𝑋𝐵)
22 pwsvscaval.b . . . . 5 𝐵 = (Base‘𝑌)
237fveq2d 6336 . . . . 5 (𝜑 → (Base‘𝑌) = (Base‘(𝐹Xs(𝐼 × {𝑅}))))
2422, 23syl5eq 2816 . . . 4 (𝜑𝐵 = (Base‘(𝐹Xs(𝐼 × {𝑅}))))
2521, 24eleqtrd 2851 . . 3 (𝜑𝑋 ∈ (Base‘(𝐹Xs(𝐼 × {𝑅}))))
2611, 12, 13, 14, 17, 3, 19, 20, 25prdsvscaval 16346 . 2 (𝜑 → (𝐴( ·𝑠 ‘(𝐹Xs(𝐼 × {𝑅})))𝑋) = (𝑥𝐼 ↦ (𝐴( ·𝑠 ‘((𝐼 × {𝑅})‘𝑥))(𝑋𝑥))))
27 fvconst2g 6610 . . . . . . . 8 ((𝑅𝑉𝑥𝐼) → ((𝐼 × {𝑅})‘𝑥) = 𝑅)
282, 27sylan 561 . . . . . . 7 ((𝜑𝑥𝐼) → ((𝐼 × {𝑅})‘𝑥) = 𝑅)
2928fveq2d 6336 . . . . . 6 ((𝜑𝑥𝐼) → ( ·𝑠 ‘((𝐼 × {𝑅})‘𝑥)) = ( ·𝑠𝑅))
30 pwsvscaval.s . . . . . 6 · = ( ·𝑠𝑅)
3129, 30syl6eqr 2822 . . . . 5 ((𝜑𝑥𝐼) → ( ·𝑠 ‘((𝐼 × {𝑅})‘𝑥)) = · )
3231oveqd 6809 . . . 4 ((𝜑𝑥𝐼) → (𝐴( ·𝑠 ‘((𝐼 × {𝑅})‘𝑥))(𝑋𝑥)) = (𝐴 · (𝑋𝑥)))
3332mpteq2dva 4876 . . 3 (𝜑 → (𝑥𝐼 ↦ (𝐴( ·𝑠 ‘((𝐼 × {𝑅})‘𝑥))(𝑋𝑥))) = (𝑥𝐼 ↦ (𝐴 · (𝑋𝑥))))
3420adantr 466 . . . 4 ((𝜑𝑥𝐼) → 𝐴𝐾)
35 fvexd 6344 . . . 4 ((𝜑𝑥𝐼) → (𝑋𝑥) ∈ V)
36 fconstmpt 5303 . . . . 5 (𝐼 × {𝐴}) = (𝑥𝐼𝐴)
3736a1i 11 . . . 4 (𝜑 → (𝐼 × {𝐴}) = (𝑥𝐼𝐴))
38 eqid 2770 . . . . . 6 (Base‘𝑅) = (Base‘𝑅)
394, 38, 22, 2, 3, 21pwselbas 16356 . . . . 5 (𝜑𝑋:𝐼⟶(Base‘𝑅))
4039feqmptd 6391 . . . 4 (𝜑𝑋 = (𝑥𝐼 ↦ (𝑋𝑥)))
413, 34, 35, 37, 40offval2 7060 . . 3 (𝜑 → ((𝐼 × {𝐴}) ∘𝑓 · 𝑋) = (𝑥𝐼 ↦ (𝐴 · (𝑋𝑥))))
4233, 41eqtr4d 2807 . 2 (𝜑 → (𝑥𝐼 ↦ (𝐴( ·𝑠 ‘((𝐼 × {𝑅})‘𝑥))(𝑋𝑥))) = ((𝐼 × {𝐴}) ∘𝑓 · 𝑋))
4310, 26, 423eqtrd 2808 1 (𝜑 → (𝐴 𝑋) = ((𝐼 × {𝐴}) ∘𝑓 · 𝑋))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 382   = wceq 1630   ∈ wcel 2144  Vcvv 3349  {csn 4314   ↦ cmpt 4861   × cxp 5247   Fn wfn 6026  ‘cfv 6031  (class class class)co 6792   ∘𝑓 cof 7041  Basecbs 16063  Scalarcsca 16151   ·𝑠 cvsca 16152  Xscprds 16313   ↑s cpws 16314 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-rep 4902  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034  ax-un 7095  ax-cnex 10193  ax-resscn 10194  ax-1cn 10195  ax-icn 10196  ax-addcl 10197  ax-addrcl 10198  ax-mulcl 10199  ax-mulrcl 10200  ax-mulcom 10201  ax-addass 10202  ax-mulass 10203  ax-distr 10204  ax-i2m1 10205  ax-1ne0 10206  ax-1rid 10207  ax-rnegex 10208  ax-rrecex 10209  ax-cnre 10210  ax-pre-lttri 10211  ax-pre-lttrn 10212  ax-pre-ltadd 10213  ax-pre-mulgt0 10214 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3or 1071  df-3an 1072  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-nel 3046  df-ral 3065  df-rex 3066  df-reu 3067  df-rab 3069  df-v 3351  df-sbc 3586  df-csb 3681  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-pss 3737  df-nul 4062  df-if 4224  df-pw 4297  df-sn 4315  df-pr 4317  df-tp 4319  df-op 4321  df-uni 4573  df-int 4610  df-iun 4654  df-br 4785  df-opab 4845  df-mpt 4862  df-tr 4885  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6753  df-ov 6795  df-oprab 6796  df-mpt2 6797  df-of 7043  df-om 7212  df-1st 7314  df-2nd 7315  df-wrecs 7558  df-recs 7620  df-rdg 7658  df-1o 7712  df-oadd 7716  df-er 7895  df-map 8010  df-ixp 8062  df-en 8109  df-dom 8110  df-sdom 8111  df-fin 8112  df-sup 8503  df-pnf 10277  df-mnf 10278  df-xr 10279  df-ltxr 10280  df-le 10281  df-sub 10469  df-neg 10470  df-nn 11222  df-2 11280  df-3 11281  df-4 11282  df-5 11283  df-6 11284  df-7 11285  df-8 11286  df-9 11287  df-n0 11494  df-z 11579  df-dec 11695  df-uz 11888  df-fz 12533  df-struct 16065  df-ndx 16066  df-slot 16067  df-base 16069  df-plusg 16161  df-mulr 16162  df-sca 16164  df-vsca 16165  df-ip 16166  df-tset 16167  df-ple 16168  df-ds 16171  df-hom 16173  df-cco 16174  df-prds 16315  df-pws 16317 This theorem is referenced by:  pwsvscaval  16362  pwsdiaglmhm  19269  pwssplit3  19273  frlmvscafval  20325
 Copyright terms: Public domain W3C validator