Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwssplit1 Structured version   Visualization version   GIF version

Theorem pwssplit1 19107
 Description: Splitting for structure powers, part 1: restriction is an onto function. The only actual monoid law we need here is that the base set is nonempty. (Contributed by Stefan O'Rear, 24-Jan-2015.)
Hypotheses
Ref Expression
pwssplit1.y 𝑌 = (𝑊s 𝑈)
pwssplit1.z 𝑍 = (𝑊s 𝑉)
pwssplit1.b 𝐵 = (Base‘𝑌)
pwssplit1.c 𝐶 = (Base‘𝑍)
pwssplit1.f 𝐹 = (𝑥𝐵 ↦ (𝑥𝑉))
Assertion
Ref Expression
pwssplit1 ((𝑊 ∈ Mnd ∧ 𝑈𝑋𝑉𝑈) → 𝐹:𝐵onto𝐶)
Distinct variable groups:   𝑥,𝑌   𝑥,𝑊   𝑥,𝑈   𝑥,𝑍   𝑥,𝑉   𝑥,𝐵   𝑥,𝐶   𝑥,𝑋
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem pwssplit1
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pwssplit1.y . . 3 𝑌 = (𝑊s 𝑈)
2 pwssplit1.z . . 3 𝑍 = (𝑊s 𝑉)
3 pwssplit1.b . . 3 𝐵 = (Base‘𝑌)
4 pwssplit1.c . . 3 𝐶 = (Base‘𝑍)
5 pwssplit1.f . . 3 𝐹 = (𝑥𝐵 ↦ (𝑥𝑉))
61, 2, 3, 4, 5pwssplit0 19106 . 2 ((𝑊 ∈ Mnd ∧ 𝑈𝑋𝑉𝑈) → 𝐹:𝐵𝐶)
7 simp1 1081 . . . . . . . . 9 ((𝑊 ∈ Mnd ∧ 𝑈𝑋𝑉𝑈) → 𝑊 ∈ Mnd)
8 simp2 1082 . . . . . . . . . 10 ((𝑊 ∈ Mnd ∧ 𝑈𝑋𝑉𝑈) → 𝑈𝑋)
9 simp3 1083 . . . . . . . . . 10 ((𝑊 ∈ Mnd ∧ 𝑈𝑋𝑉𝑈) → 𝑉𝑈)
108, 9ssexd 4838 . . . . . . . . 9 ((𝑊 ∈ Mnd ∧ 𝑈𝑋𝑉𝑈) → 𝑉 ∈ V)
11 eqid 2651 . . . . . . . . . 10 (Base‘𝑊) = (Base‘𝑊)
122, 11, 4pwselbasb 16195 . . . . . . . . 9 ((𝑊 ∈ Mnd ∧ 𝑉 ∈ V) → (𝑎𝐶𝑎:𝑉⟶(Base‘𝑊)))
137, 10, 12syl2anc 694 . . . . . . . 8 ((𝑊 ∈ Mnd ∧ 𝑈𝑋𝑉𝑈) → (𝑎𝐶𝑎:𝑉⟶(Base‘𝑊)))
1413biimpa 500 . . . . . . 7 (((𝑊 ∈ Mnd ∧ 𝑈𝑋𝑉𝑈) ∧ 𝑎𝐶) → 𝑎:𝑉⟶(Base‘𝑊))
15 fvex 6239 . . . . . . . . . 10 (0g𝑊) ∈ V
1615fconst 6129 . . . . . . . . 9 ((𝑈𝑉) × {(0g𝑊)}):(𝑈𝑉)⟶{(0g𝑊)}
1716a1i 11 . . . . . . . 8 (((𝑊 ∈ Mnd ∧ 𝑈𝑋𝑉𝑈) ∧ 𝑎𝐶) → ((𝑈𝑉) × {(0g𝑊)}):(𝑈𝑉)⟶{(0g𝑊)})
18 simpl1 1084 . . . . . . . . . 10 (((𝑊 ∈ Mnd ∧ 𝑈𝑋𝑉𝑈) ∧ 𝑎𝐶) → 𝑊 ∈ Mnd)
19 eqid 2651 . . . . . . . . . . 11 (0g𝑊) = (0g𝑊)
2011, 19mndidcl 17355 . . . . . . . . . 10 (𝑊 ∈ Mnd → (0g𝑊) ∈ (Base‘𝑊))
2118, 20syl 17 . . . . . . . . 9 (((𝑊 ∈ Mnd ∧ 𝑈𝑋𝑉𝑈) ∧ 𝑎𝐶) → (0g𝑊) ∈ (Base‘𝑊))
2221snssd 4372 . . . . . . . 8 (((𝑊 ∈ Mnd ∧ 𝑈𝑋𝑉𝑈) ∧ 𝑎𝐶) → {(0g𝑊)} ⊆ (Base‘𝑊))
2317, 22fssd 6095 . . . . . . 7 (((𝑊 ∈ Mnd ∧ 𝑈𝑋𝑉𝑈) ∧ 𝑎𝐶) → ((𝑈𝑉) × {(0g𝑊)}):(𝑈𝑉)⟶(Base‘𝑊))
24 disjdif 4073 . . . . . . . 8 (𝑉 ∩ (𝑈𝑉)) = ∅
2524a1i 11 . . . . . . 7 (((𝑊 ∈ Mnd ∧ 𝑈𝑋𝑉𝑈) ∧ 𝑎𝐶) → (𝑉 ∩ (𝑈𝑉)) = ∅)
26 fun 6104 . . . . . . 7 (((𝑎:𝑉⟶(Base‘𝑊) ∧ ((𝑈𝑉) × {(0g𝑊)}):(𝑈𝑉)⟶(Base‘𝑊)) ∧ (𝑉 ∩ (𝑈𝑉)) = ∅) → (𝑎 ∪ ((𝑈𝑉) × {(0g𝑊)})):(𝑉 ∪ (𝑈𝑉))⟶((Base‘𝑊) ∪ (Base‘𝑊)))
2714, 23, 25, 26syl21anc 1365 . . . . . 6 (((𝑊 ∈ Mnd ∧ 𝑈𝑋𝑉𝑈) ∧ 𝑎𝐶) → (𝑎 ∪ ((𝑈𝑉) × {(0g𝑊)})):(𝑉 ∪ (𝑈𝑉))⟶((Base‘𝑊) ∪ (Base‘𝑊)))
28 simpl3 1086 . . . . . . . 8 (((𝑊 ∈ Mnd ∧ 𝑈𝑋𝑉𝑈) ∧ 𝑎𝐶) → 𝑉𝑈)
29 undif 4082 . . . . . . . 8 (𝑉𝑈 ↔ (𝑉 ∪ (𝑈𝑉)) = 𝑈)
3028, 29sylib 208 . . . . . . 7 (((𝑊 ∈ Mnd ∧ 𝑈𝑋𝑉𝑈) ∧ 𝑎𝐶) → (𝑉 ∪ (𝑈𝑉)) = 𝑈)
31 unidm 3789 . . . . . . . 8 ((Base‘𝑊) ∪ (Base‘𝑊)) = (Base‘𝑊)
3231a1i 11 . . . . . . 7 (((𝑊 ∈ Mnd ∧ 𝑈𝑋𝑉𝑈) ∧ 𝑎𝐶) → ((Base‘𝑊) ∪ (Base‘𝑊)) = (Base‘𝑊))
3330, 32feq23d 6078 . . . . . 6 (((𝑊 ∈ Mnd ∧ 𝑈𝑋𝑉𝑈) ∧ 𝑎𝐶) → ((𝑎 ∪ ((𝑈𝑉) × {(0g𝑊)})):(𝑉 ∪ (𝑈𝑉))⟶((Base‘𝑊) ∪ (Base‘𝑊)) ↔ (𝑎 ∪ ((𝑈𝑉) × {(0g𝑊)})):𝑈⟶(Base‘𝑊)))
3427, 33mpbid 222 . . . . 5 (((𝑊 ∈ Mnd ∧ 𝑈𝑋𝑉𝑈) ∧ 𝑎𝐶) → (𝑎 ∪ ((𝑈𝑉) × {(0g𝑊)})):𝑈⟶(Base‘𝑊))
35 simpl2 1085 . . . . . 6 (((𝑊 ∈ Mnd ∧ 𝑈𝑋𝑉𝑈) ∧ 𝑎𝐶) → 𝑈𝑋)
361, 11, 3pwselbasb 16195 . . . . . 6 ((𝑊 ∈ Mnd ∧ 𝑈𝑋) → ((𝑎 ∪ ((𝑈𝑉) × {(0g𝑊)})) ∈ 𝐵 ↔ (𝑎 ∪ ((𝑈𝑉) × {(0g𝑊)})):𝑈⟶(Base‘𝑊)))
3718, 35, 36syl2anc 694 . . . . 5 (((𝑊 ∈ Mnd ∧ 𝑈𝑋𝑉𝑈) ∧ 𝑎𝐶) → ((𝑎 ∪ ((𝑈𝑉) × {(0g𝑊)})) ∈ 𝐵 ↔ (𝑎 ∪ ((𝑈𝑉) × {(0g𝑊)})):𝑈⟶(Base‘𝑊)))
3834, 37mpbird 247 . . . 4 (((𝑊 ∈ Mnd ∧ 𝑈𝑋𝑉𝑈) ∧ 𝑎𝐶) → (𝑎 ∪ ((𝑈𝑉) × {(0g𝑊)})) ∈ 𝐵)
395fvtresfn 6323 . . . . . 6 ((𝑎 ∪ ((𝑈𝑉) × {(0g𝑊)})) ∈ 𝐵 → (𝐹‘(𝑎 ∪ ((𝑈𝑉) × {(0g𝑊)}))) = ((𝑎 ∪ ((𝑈𝑉) × {(0g𝑊)})) ↾ 𝑉))
4038, 39syl 17 . . . . 5 (((𝑊 ∈ Mnd ∧ 𝑈𝑋𝑉𝑈) ∧ 𝑎𝐶) → (𝐹‘(𝑎 ∪ ((𝑈𝑉) × {(0g𝑊)}))) = ((𝑎 ∪ ((𝑈𝑉) × {(0g𝑊)})) ↾ 𝑉))
41 resundir 5446 . . . . . . 7 ((𝑎 ∪ ((𝑈𝑉) × {(0g𝑊)})) ↾ 𝑉) = ((𝑎𝑉) ∪ (((𝑈𝑉) × {(0g𝑊)}) ↾ 𝑉))
42 ffn 6083 . . . . . . . . 9 (𝑎:𝑉⟶(Base‘𝑊) → 𝑎 Fn 𝑉)
43 fnresdm 6038 . . . . . . . . 9 (𝑎 Fn 𝑉 → (𝑎𝑉) = 𝑎)
4414, 42, 433syl 18 . . . . . . . 8 (((𝑊 ∈ Mnd ∧ 𝑈𝑋𝑉𝑈) ∧ 𝑎𝐶) → (𝑎𝑉) = 𝑎)
45 incom 3838 . . . . . . . . . 10 ((𝑈𝑉) ∩ 𝑉) = (𝑉 ∩ (𝑈𝑉))
4645, 24eqtri 2673 . . . . . . . . 9 ((𝑈𝑉) ∩ 𝑉) = ∅
47 fnconstg 6131 . . . . . . . . . . 11 ((0g𝑊) ∈ V → ((𝑈𝑉) × {(0g𝑊)}) Fn (𝑈𝑉))
4815, 47ax-mp 5 . . . . . . . . . 10 ((𝑈𝑉) × {(0g𝑊)}) Fn (𝑈𝑉)
49 fnresdisj 6039 . . . . . . . . . 10 (((𝑈𝑉) × {(0g𝑊)}) Fn (𝑈𝑉) → (((𝑈𝑉) ∩ 𝑉) = ∅ ↔ (((𝑈𝑉) × {(0g𝑊)}) ↾ 𝑉) = ∅))
5048, 49mp1i 13 . . . . . . . . 9 (((𝑊 ∈ Mnd ∧ 𝑈𝑋𝑉𝑈) ∧ 𝑎𝐶) → (((𝑈𝑉) ∩ 𝑉) = ∅ ↔ (((𝑈𝑉) × {(0g𝑊)}) ↾ 𝑉) = ∅))
5146, 50mpbii 223 . . . . . . . 8 (((𝑊 ∈ Mnd ∧ 𝑈𝑋𝑉𝑈) ∧ 𝑎𝐶) → (((𝑈𝑉) × {(0g𝑊)}) ↾ 𝑉) = ∅)
5244, 51uneq12d 3801 . . . . . . 7 (((𝑊 ∈ Mnd ∧ 𝑈𝑋𝑉𝑈) ∧ 𝑎𝐶) → ((𝑎𝑉) ∪ (((𝑈𝑉) × {(0g𝑊)}) ↾ 𝑉)) = (𝑎 ∪ ∅))
5341, 52syl5eq 2697 . . . . . 6 (((𝑊 ∈ Mnd ∧ 𝑈𝑋𝑉𝑈) ∧ 𝑎𝐶) → ((𝑎 ∪ ((𝑈𝑉) × {(0g𝑊)})) ↾ 𝑉) = (𝑎 ∪ ∅))
54 un0 4000 . . . . . 6 (𝑎 ∪ ∅) = 𝑎
5553, 54syl6eq 2701 . . . . 5 (((𝑊 ∈ Mnd ∧ 𝑈𝑋𝑉𝑈) ∧ 𝑎𝐶) → ((𝑎 ∪ ((𝑈𝑉) × {(0g𝑊)})) ↾ 𝑉) = 𝑎)
5640, 55eqtr2d 2686 . . . 4 (((𝑊 ∈ Mnd ∧ 𝑈𝑋𝑉𝑈) ∧ 𝑎𝐶) → 𝑎 = (𝐹‘(𝑎 ∪ ((𝑈𝑉) × {(0g𝑊)}))))
57 fveq2 6229 . . . . . 6 (𝑏 = (𝑎 ∪ ((𝑈𝑉) × {(0g𝑊)})) → (𝐹𝑏) = (𝐹‘(𝑎 ∪ ((𝑈𝑉) × {(0g𝑊)}))))
5857eqeq2d 2661 . . . . 5 (𝑏 = (𝑎 ∪ ((𝑈𝑉) × {(0g𝑊)})) → (𝑎 = (𝐹𝑏) ↔ 𝑎 = (𝐹‘(𝑎 ∪ ((𝑈𝑉) × {(0g𝑊)})))))
5958rspcev 3340 . . . 4 (((𝑎 ∪ ((𝑈𝑉) × {(0g𝑊)})) ∈ 𝐵𝑎 = (𝐹‘(𝑎 ∪ ((𝑈𝑉) × {(0g𝑊)})))) → ∃𝑏𝐵 𝑎 = (𝐹𝑏))
6038, 56, 59syl2anc 694 . . 3 (((𝑊 ∈ Mnd ∧ 𝑈𝑋𝑉𝑈) ∧ 𝑎𝐶) → ∃𝑏𝐵 𝑎 = (𝐹𝑏))
6160ralrimiva 2995 . 2 ((𝑊 ∈ Mnd ∧ 𝑈𝑋𝑉𝑈) → ∀𝑎𝐶𝑏𝐵 𝑎 = (𝐹𝑏))
62 dffo3 6414 . 2 (𝐹:𝐵onto𝐶 ↔ (𝐹:𝐵𝐶 ∧ ∀𝑎𝐶𝑏𝐵 𝑎 = (𝐹𝑏)))
636, 61, 62sylanbrc 699 1 ((𝑊 ∈ Mnd ∧ 𝑈𝑋𝑉𝑈) → 𝐹:𝐵onto𝐶)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 383   ∧ w3a 1054   = wceq 1523   ∈ wcel 2030  ∀wral 2941  ∃wrex 2942  Vcvv 3231   ∖ cdif 3604   ∪ cun 3605   ∩ cin 3606   ⊆ wss 3607  ∅c0 3948  {csn 4210   ↦ cmpt 4762   × cxp 5141   ↾ cres 5145   Fn wfn 5921  ⟶wf 5922  –onto→wfo 5924  ‘cfv 5926  (class class class)co 6690  Basecbs 15904  0gc0g 16147   ↑s cpws 16154  Mndcmnd 17341 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-oadd 7609  df-er 7787  df-map 7901  df-ixp 7951  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-sup 8389  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-nn 11059  df-2 11117  df-3 11118  df-4 11119  df-5 11120  df-6 11121  df-7 11122  df-8 11123  df-9 11124  df-n0 11331  df-z 11416  df-dec 11532  df-uz 11726  df-fz 12365  df-struct 15906  df-ndx 15907  df-slot 15908  df-base 15910  df-plusg 16001  df-mulr 16002  df-sca 16004  df-vsca 16005  df-ip 16006  df-tset 16007  df-ple 16008  df-ds 16011  df-hom 16013  df-cco 16014  df-0g 16149  df-prds 16155  df-pws 16157  df-mgm 17289  df-sgrp 17331  df-mnd 17342 This theorem is referenced by:  pwslnmlem2  37980
 Copyright terms: Public domain W3C validator