MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwsmgp Structured version   Visualization version   GIF version

Theorem pwsmgp 18825
Description: The multiplicative group of the power structure resembles the power of the multiplicative group. (Contributed by Mario Carneiro, 12-Mar-2015.)
Hypotheses
Ref Expression
pwsmgp.y 𝑌 = (𝑅s 𝐼)
pwsmgp.m 𝑀 = (mulGrp‘𝑅)
pwsmgp.z 𝑍 = (𝑀s 𝐼)
pwsmgp.n 𝑁 = (mulGrp‘𝑌)
pwsmgp.b 𝐵 = (Base‘𝑁)
pwsmgp.c 𝐶 = (Base‘𝑍)
pwsmgp.p + = (+g𝑁)
pwsmgp.q = (+g𝑍)
Assertion
Ref Expression
pwsmgp ((𝑅𝑉𝐼𝑊) → (𝐵 = 𝐶+ = ))

Proof of Theorem pwsmgp
StepHypRef Expression
1 eqid 2770 . . . . . 6 ((Scalar‘𝑅)Xs(𝐼 × {𝑅})) = ((Scalar‘𝑅)Xs(𝐼 × {𝑅}))
2 eqid 2770 . . . . . 6 (mulGrp‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))) = (mulGrp‘((Scalar‘𝑅)Xs(𝐼 × {𝑅})))
3 eqid 2770 . . . . . 6 ((Scalar‘𝑅)Xs(mulGrp ∘ (𝐼 × {𝑅}))) = ((Scalar‘𝑅)Xs(mulGrp ∘ (𝐼 × {𝑅})))
4 simpr 471 . . . . . 6 ((𝑅𝑉𝐼𝑊) → 𝐼𝑊)
5 fvexd 6344 . . . . . 6 ((𝑅𝑉𝐼𝑊) → (Scalar‘𝑅) ∈ V)
6 fnconstg 6233 . . . . . . 7 (𝑅𝑉 → (𝐼 × {𝑅}) Fn 𝐼)
76adantr 466 . . . . . 6 ((𝑅𝑉𝐼𝑊) → (𝐼 × {𝑅}) Fn 𝐼)
81, 2, 3, 4, 5, 7prdsmgp 18817 . . . . 5 ((𝑅𝑉𝐼𝑊) → ((Base‘(mulGrp‘((Scalar‘𝑅)Xs(𝐼 × {𝑅})))) = (Base‘((Scalar‘𝑅)Xs(mulGrp ∘ (𝐼 × {𝑅})))) ∧ (+g‘(mulGrp‘((Scalar‘𝑅)Xs(𝐼 × {𝑅})))) = (+g‘((Scalar‘𝑅)Xs(mulGrp ∘ (𝐼 × {𝑅}))))))
98simpld 476 . . . 4 ((𝑅𝑉𝐼𝑊) → (Base‘(mulGrp‘((Scalar‘𝑅)Xs(𝐼 × {𝑅})))) = (Base‘((Scalar‘𝑅)Xs(mulGrp ∘ (𝐼 × {𝑅})))))
10 pwsmgp.n . . . . . 6 𝑁 = (mulGrp‘𝑌)
11 pwsmgp.y . . . . . . . 8 𝑌 = (𝑅s 𝐼)
12 eqid 2770 . . . . . . . 8 (Scalar‘𝑅) = (Scalar‘𝑅)
1311, 12pwsval 16353 . . . . . . 7 ((𝑅𝑉𝐼𝑊) → 𝑌 = ((Scalar‘𝑅)Xs(𝐼 × {𝑅})))
1413fveq2d 6336 . . . . . 6 ((𝑅𝑉𝐼𝑊) → (mulGrp‘𝑌) = (mulGrp‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))))
1510, 14syl5eq 2816 . . . . 5 ((𝑅𝑉𝐼𝑊) → 𝑁 = (mulGrp‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))))
1615fveq2d 6336 . . . 4 ((𝑅𝑉𝐼𝑊) → (Base‘𝑁) = (Base‘(mulGrp‘((Scalar‘𝑅)Xs(𝐼 × {𝑅})))))
17 pwsmgp.z . . . . . 6 𝑍 = (𝑀s 𝐼)
18 pwsmgp.m . . . . . . . . 9 𝑀 = (mulGrp‘𝑅)
19 fvex 6342 . . . . . . . . 9 (mulGrp‘𝑅) ∈ V
2018, 19eqeltri 2845 . . . . . . . 8 𝑀 ∈ V
21 eqid 2770 . . . . . . . . 9 (𝑀s 𝐼) = (𝑀s 𝐼)
22 eqid 2770 . . . . . . . . 9 (Scalar‘𝑀) = (Scalar‘𝑀)
2321, 22pwsval 16353 . . . . . . . 8 ((𝑀 ∈ V ∧ 𝐼𝑊) → (𝑀s 𝐼) = ((Scalar‘𝑀)Xs(𝐼 × {𝑀})))
2420, 4, 23sylancr 567 . . . . . . 7 ((𝑅𝑉𝐼𝑊) → (𝑀s 𝐼) = ((Scalar‘𝑀)Xs(𝐼 × {𝑀})))
2518, 12mgpsca 18703 . . . . . . . . . 10 (Scalar‘𝑅) = (Scalar‘𝑀)
2625eqcomi 2779 . . . . . . . . 9 (Scalar‘𝑀) = (Scalar‘𝑅)
2726a1i 11 . . . . . . . 8 ((𝑅𝑉𝐼𝑊) → (Scalar‘𝑀) = (Scalar‘𝑅))
28 fnmgp 18698 . . . . . . . . . 10 mulGrp Fn V
29 elex 3361 . . . . . . . . . . 11 (𝑅𝑉𝑅 ∈ V)
3029adantr 466 . . . . . . . . . 10 ((𝑅𝑉𝐼𝑊) → 𝑅 ∈ V)
31 fcoconst 6543 . . . . . . . . . 10 ((mulGrp Fn V ∧ 𝑅 ∈ V) → (mulGrp ∘ (𝐼 × {𝑅})) = (𝐼 × {(mulGrp‘𝑅)}))
3228, 30, 31sylancr 567 . . . . . . . . 9 ((𝑅𝑉𝐼𝑊) → (mulGrp ∘ (𝐼 × {𝑅})) = (𝐼 × {(mulGrp‘𝑅)}))
3318sneqi 4325 . . . . . . . . . 10 {𝑀} = {(mulGrp‘𝑅)}
3433xpeq2i 5276 . . . . . . . . 9 (𝐼 × {𝑀}) = (𝐼 × {(mulGrp‘𝑅)})
3532, 34syl6reqr 2823 . . . . . . . 8 ((𝑅𝑉𝐼𝑊) → (𝐼 × {𝑀}) = (mulGrp ∘ (𝐼 × {𝑅})))
3627, 35oveq12d 6810 . . . . . . 7 ((𝑅𝑉𝐼𝑊) → ((Scalar‘𝑀)Xs(𝐼 × {𝑀})) = ((Scalar‘𝑅)Xs(mulGrp ∘ (𝐼 × {𝑅}))))
3724, 36eqtrd 2804 . . . . . 6 ((𝑅𝑉𝐼𝑊) → (𝑀s 𝐼) = ((Scalar‘𝑅)Xs(mulGrp ∘ (𝐼 × {𝑅}))))
3817, 37syl5eq 2816 . . . . 5 ((𝑅𝑉𝐼𝑊) → 𝑍 = ((Scalar‘𝑅)Xs(mulGrp ∘ (𝐼 × {𝑅}))))
3938fveq2d 6336 . . . 4 ((𝑅𝑉𝐼𝑊) → (Base‘𝑍) = (Base‘((Scalar‘𝑅)Xs(mulGrp ∘ (𝐼 × {𝑅})))))
409, 16, 393eqtr4d 2814 . . 3 ((𝑅𝑉𝐼𝑊) → (Base‘𝑁) = (Base‘𝑍))
41 pwsmgp.b . . 3 𝐵 = (Base‘𝑁)
42 pwsmgp.c . . 3 𝐶 = (Base‘𝑍)
4340, 41, 423eqtr4g 2829 . 2 ((𝑅𝑉𝐼𝑊) → 𝐵 = 𝐶)
448simprd 477 . . . 4 ((𝑅𝑉𝐼𝑊) → (+g‘(mulGrp‘((Scalar‘𝑅)Xs(𝐼 × {𝑅})))) = (+g‘((Scalar‘𝑅)Xs(mulGrp ∘ (𝐼 × {𝑅})))))
4515fveq2d 6336 . . . 4 ((𝑅𝑉𝐼𝑊) → (+g𝑁) = (+g‘(mulGrp‘((Scalar‘𝑅)Xs(𝐼 × {𝑅})))))
4638fveq2d 6336 . . . 4 ((𝑅𝑉𝐼𝑊) → (+g𝑍) = (+g‘((Scalar‘𝑅)Xs(mulGrp ∘ (𝐼 × {𝑅})))))
4744, 45, 463eqtr4d 2814 . . 3 ((𝑅𝑉𝐼𝑊) → (+g𝑁) = (+g𝑍))
48 pwsmgp.p . . 3 + = (+g𝑁)
49 pwsmgp.q . . 3 = (+g𝑍)
5047, 48, 493eqtr4g 2829 . 2 ((𝑅𝑉𝐼𝑊) → + = )
5143, 50jca 495 1 ((𝑅𝑉𝐼𝑊) → (𝐵 = 𝐶+ = ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382   = wceq 1630  wcel 2144  Vcvv 3349  {csn 4314   × cxp 5247  ccom 5253   Fn wfn 6026  cfv 6031  (class class class)co 6792  Basecbs 16063  +gcplusg 16148  Scalarcsca 16151  Xscprds 16313  s cpws 16314  mulGrpcmgp 18696
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-rep 4902  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034  ax-un 7095  ax-cnex 10193  ax-resscn 10194  ax-1cn 10195  ax-icn 10196  ax-addcl 10197  ax-addrcl 10198  ax-mulcl 10199  ax-mulrcl 10200  ax-mulcom 10201  ax-addass 10202  ax-mulass 10203  ax-distr 10204  ax-i2m1 10205  ax-1ne0 10206  ax-1rid 10207  ax-rnegex 10208  ax-rrecex 10209  ax-cnre 10210  ax-pre-lttri 10211  ax-pre-lttrn 10212  ax-pre-ltadd 10213  ax-pre-mulgt0 10214
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3or 1071  df-3an 1072  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-nel 3046  df-ral 3065  df-rex 3066  df-reu 3067  df-rab 3069  df-v 3351  df-sbc 3586  df-csb 3681  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-pss 3737  df-nul 4062  df-if 4224  df-pw 4297  df-sn 4315  df-pr 4317  df-tp 4319  df-op 4321  df-uni 4573  df-int 4610  df-iun 4654  df-br 4785  df-opab 4845  df-mpt 4862  df-tr 4885  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6753  df-ov 6795  df-oprab 6796  df-mpt2 6797  df-om 7212  df-1st 7314  df-2nd 7315  df-wrecs 7558  df-recs 7620  df-rdg 7658  df-1o 7712  df-oadd 7716  df-er 7895  df-map 8010  df-ixp 8062  df-en 8109  df-dom 8110  df-sdom 8111  df-fin 8112  df-sup 8503  df-pnf 10277  df-mnf 10278  df-xr 10279  df-ltxr 10280  df-le 10281  df-sub 10469  df-neg 10470  df-nn 11222  df-2 11280  df-3 11281  df-4 11282  df-5 11283  df-6 11284  df-7 11285  df-8 11286  df-9 11287  df-n0 11494  df-z 11579  df-dec 11695  df-uz 11888  df-fz 12533  df-struct 16065  df-ndx 16066  df-slot 16067  df-base 16069  df-sets 16070  df-plusg 16161  df-mulr 16162  df-sca 16164  df-vsca 16165  df-ip 16166  df-tset 16167  df-ple 16168  df-ds 16171  df-hom 16173  df-cco 16174  df-prds 16315  df-pws 16317  df-mgp 18697
This theorem is referenced by:  pwsco1rhm  18947  pwsco2rhm  18948  pwsdiagrhm  19022  evl1expd  19923
  Copyright terms: Public domain W3C validator