MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwsdiagmhm Structured version   Visualization version   GIF version

Theorem pwsdiagmhm 17416
Description: Diagonal monoid homomorphism into a structure power. (Contributed by Stefan O'Rear, 12-Mar-2015.)
Hypotheses
Ref Expression
pwsdiagmhm.y 𝑌 = (𝑅s 𝐼)
pwsdiagmhm.b 𝐵 = (Base‘𝑅)
pwsdiagmhm.f 𝐹 = (𝑥𝐵 ↦ (𝐼 × {𝑥}))
Assertion
Ref Expression
pwsdiagmhm ((𝑅 ∈ Mnd ∧ 𝐼𝑊) → 𝐹 ∈ (𝑅 MndHom 𝑌))
Distinct variable groups:   𝑥,𝑌   𝑥,𝑅   𝑥,𝐼   𝑥,𝐵   𝑥,𝑊
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem pwsdiagmhm
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 472 . . 3 ((𝑅 ∈ Mnd ∧ 𝐼𝑊) → 𝑅 ∈ Mnd)
2 pwsdiagmhm.y . . . 4 𝑌 = (𝑅s 𝐼)
32pwsmnd 17372 . . 3 ((𝑅 ∈ Mnd ∧ 𝐼𝑊) → 𝑌 ∈ Mnd)
41, 3jca 553 . 2 ((𝑅 ∈ Mnd ∧ 𝐼𝑊) → (𝑅 ∈ Mnd ∧ 𝑌 ∈ Mnd))
5 pwsdiagmhm.b . . . . . . 7 𝐵 = (Base‘𝑅)
6 fvex 6239 . . . . . . 7 (Base‘𝑅) ∈ V
75, 6eqeltri 2726 . . . . . 6 𝐵 ∈ V
8 pwsdiagmhm.f . . . . . . 7 𝐹 = (𝑥𝐵 ↦ (𝐼 × {𝑥}))
98fdiagfn 7943 . . . . . 6 ((𝐵 ∈ V ∧ 𝐼𝑊) → 𝐹:𝐵⟶(𝐵𝑚 𝐼))
107, 9mpan 706 . . . . 5 (𝐼𝑊𝐹:𝐵⟶(𝐵𝑚 𝐼))
1110adantl 481 . . . 4 ((𝑅 ∈ Mnd ∧ 𝐼𝑊) → 𝐹:𝐵⟶(𝐵𝑚 𝐼))
122, 5pwsbas 16194 . . . . 5 ((𝑅 ∈ Mnd ∧ 𝐼𝑊) → (𝐵𝑚 𝐼) = (Base‘𝑌))
1312feq3d 6070 . . . 4 ((𝑅 ∈ Mnd ∧ 𝐼𝑊) → (𝐹:𝐵⟶(𝐵𝑚 𝐼) ↔ 𝐹:𝐵⟶(Base‘𝑌)))
1411, 13mpbid 222 . . 3 ((𝑅 ∈ Mnd ∧ 𝐼𝑊) → 𝐹:𝐵⟶(Base‘𝑌))
15 simplr 807 . . . . . 6 (((𝑅 ∈ Mnd ∧ 𝐼𝑊) ∧ (𝑎𝐵𝑏𝐵)) → 𝐼𝑊)
16 eqid 2651 . . . . . . . . 9 (+g𝑅) = (+g𝑅)
175, 16mndcl 17348 . . . . . . . 8 ((𝑅 ∈ Mnd ∧ 𝑎𝐵𝑏𝐵) → (𝑎(+g𝑅)𝑏) ∈ 𝐵)
18173expb 1285 . . . . . . 7 ((𝑅 ∈ Mnd ∧ (𝑎𝐵𝑏𝐵)) → (𝑎(+g𝑅)𝑏) ∈ 𝐵)
1918adantlr 751 . . . . . 6 (((𝑅 ∈ Mnd ∧ 𝐼𝑊) ∧ (𝑎𝐵𝑏𝐵)) → (𝑎(+g𝑅)𝑏) ∈ 𝐵)
208fvdiagfn 7944 . . . . . 6 ((𝐼𝑊 ∧ (𝑎(+g𝑅)𝑏) ∈ 𝐵) → (𝐹‘(𝑎(+g𝑅)𝑏)) = (𝐼 × {(𝑎(+g𝑅)𝑏)}))
2115, 19, 20syl2anc 694 . . . . 5 (((𝑅 ∈ Mnd ∧ 𝐼𝑊) ∧ (𝑎𝐵𝑏𝐵)) → (𝐹‘(𝑎(+g𝑅)𝑏)) = (𝐼 × {(𝑎(+g𝑅)𝑏)}))
228fvdiagfn 7944 . . . . . . . . 9 ((𝐼𝑊𝑎𝐵) → (𝐹𝑎) = (𝐼 × {𝑎}))
238fvdiagfn 7944 . . . . . . . . 9 ((𝐼𝑊𝑏𝐵) → (𝐹𝑏) = (𝐼 × {𝑏}))
2422, 23oveqan12d 6709 . . . . . . . 8 (((𝐼𝑊𝑎𝐵) ∧ (𝐼𝑊𝑏𝐵)) → ((𝐹𝑎)(+g𝑌)(𝐹𝑏)) = ((𝐼 × {𝑎})(+g𝑌)(𝐼 × {𝑏})))
2524anandis 890 . . . . . . 7 ((𝐼𝑊 ∧ (𝑎𝐵𝑏𝐵)) → ((𝐹𝑎)(+g𝑌)(𝐹𝑏)) = ((𝐼 × {𝑎})(+g𝑌)(𝐼 × {𝑏})))
2625adantll 750 . . . . . 6 (((𝑅 ∈ Mnd ∧ 𝐼𝑊) ∧ (𝑎𝐵𝑏𝐵)) → ((𝐹𝑎)(+g𝑌)(𝐹𝑏)) = ((𝐼 × {𝑎})(+g𝑌)(𝐼 × {𝑏})))
27 eqid 2651 . . . . . . 7 (Base‘𝑌) = (Base‘𝑌)
28 simpll 805 . . . . . . 7 (((𝑅 ∈ Mnd ∧ 𝐼𝑊) ∧ (𝑎𝐵𝑏𝐵)) → 𝑅 ∈ Mnd)
292, 5, 27pwsdiagel 16204 . . . . . . . 8 (((𝑅 ∈ Mnd ∧ 𝐼𝑊) ∧ 𝑎𝐵) → (𝐼 × {𝑎}) ∈ (Base‘𝑌))
3029adantrr 753 . . . . . . 7 (((𝑅 ∈ Mnd ∧ 𝐼𝑊) ∧ (𝑎𝐵𝑏𝐵)) → (𝐼 × {𝑎}) ∈ (Base‘𝑌))
312, 5, 27pwsdiagel 16204 . . . . . . . 8 (((𝑅 ∈ Mnd ∧ 𝐼𝑊) ∧ 𝑏𝐵) → (𝐼 × {𝑏}) ∈ (Base‘𝑌))
3231adantrl 752 . . . . . . 7 (((𝑅 ∈ Mnd ∧ 𝐼𝑊) ∧ (𝑎𝐵𝑏𝐵)) → (𝐼 × {𝑏}) ∈ (Base‘𝑌))
33 eqid 2651 . . . . . . 7 (+g𝑌) = (+g𝑌)
342, 27, 28, 15, 30, 32, 16, 33pwsplusgval 16197 . . . . . 6 (((𝑅 ∈ Mnd ∧ 𝐼𝑊) ∧ (𝑎𝐵𝑏𝐵)) → ((𝐼 × {𝑎})(+g𝑌)(𝐼 × {𝑏})) = ((𝐼 × {𝑎}) ∘𝑓 (+g𝑅)(𝐼 × {𝑏})))
35 id 22 . . . . . . . 8 (𝐼𝑊𝐼𝑊)
36 vex 3234 . . . . . . . . 9 𝑎 ∈ V
3736a1i 11 . . . . . . . 8 (𝐼𝑊𝑎 ∈ V)
38 vex 3234 . . . . . . . . 9 𝑏 ∈ V
3938a1i 11 . . . . . . . 8 (𝐼𝑊𝑏 ∈ V)
4035, 37, 39ofc12 6964 . . . . . . 7 (𝐼𝑊 → ((𝐼 × {𝑎}) ∘𝑓 (+g𝑅)(𝐼 × {𝑏})) = (𝐼 × {(𝑎(+g𝑅)𝑏)}))
4140ad2antlr 763 . . . . . 6 (((𝑅 ∈ Mnd ∧ 𝐼𝑊) ∧ (𝑎𝐵𝑏𝐵)) → ((𝐼 × {𝑎}) ∘𝑓 (+g𝑅)(𝐼 × {𝑏})) = (𝐼 × {(𝑎(+g𝑅)𝑏)}))
4226, 34, 413eqtrd 2689 . . . . 5 (((𝑅 ∈ Mnd ∧ 𝐼𝑊) ∧ (𝑎𝐵𝑏𝐵)) → ((𝐹𝑎)(+g𝑌)(𝐹𝑏)) = (𝐼 × {(𝑎(+g𝑅)𝑏)}))
4321, 42eqtr4d 2688 . . . 4 (((𝑅 ∈ Mnd ∧ 𝐼𝑊) ∧ (𝑎𝐵𝑏𝐵)) → (𝐹‘(𝑎(+g𝑅)𝑏)) = ((𝐹𝑎)(+g𝑌)(𝐹𝑏)))
4443ralrimivva 3000 . . 3 ((𝑅 ∈ Mnd ∧ 𝐼𝑊) → ∀𝑎𝐵𝑏𝐵 (𝐹‘(𝑎(+g𝑅)𝑏)) = ((𝐹𝑎)(+g𝑌)(𝐹𝑏)))
45 simpr 476 . . . . 5 ((𝑅 ∈ Mnd ∧ 𝐼𝑊) → 𝐼𝑊)
46 eqid 2651 . . . . . . 7 (0g𝑅) = (0g𝑅)
475, 46mndidcl 17355 . . . . . 6 (𝑅 ∈ Mnd → (0g𝑅) ∈ 𝐵)
4847adantr 480 . . . . 5 ((𝑅 ∈ Mnd ∧ 𝐼𝑊) → (0g𝑅) ∈ 𝐵)
498fvdiagfn 7944 . . . . 5 ((𝐼𝑊 ∧ (0g𝑅) ∈ 𝐵) → (𝐹‘(0g𝑅)) = (𝐼 × {(0g𝑅)}))
5045, 48, 49syl2anc 694 . . . 4 ((𝑅 ∈ Mnd ∧ 𝐼𝑊) → (𝐹‘(0g𝑅)) = (𝐼 × {(0g𝑅)}))
512, 46pws0g 17373 . . . 4 ((𝑅 ∈ Mnd ∧ 𝐼𝑊) → (𝐼 × {(0g𝑅)}) = (0g𝑌))
5250, 51eqtrd 2685 . . 3 ((𝑅 ∈ Mnd ∧ 𝐼𝑊) → (𝐹‘(0g𝑅)) = (0g𝑌))
5314, 44, 523jca 1261 . 2 ((𝑅 ∈ Mnd ∧ 𝐼𝑊) → (𝐹:𝐵⟶(Base‘𝑌) ∧ ∀𝑎𝐵𝑏𝐵 (𝐹‘(𝑎(+g𝑅)𝑏)) = ((𝐹𝑎)(+g𝑌)(𝐹𝑏)) ∧ (𝐹‘(0g𝑅)) = (0g𝑌)))
54 eqid 2651 . . 3 (0g𝑌) = (0g𝑌)
555, 27, 16, 33, 46, 54ismhm 17384 . 2 (𝐹 ∈ (𝑅 MndHom 𝑌) ↔ ((𝑅 ∈ Mnd ∧ 𝑌 ∈ Mnd) ∧ (𝐹:𝐵⟶(Base‘𝑌) ∧ ∀𝑎𝐵𝑏𝐵 (𝐹‘(𝑎(+g𝑅)𝑏)) = ((𝐹𝑎)(+g𝑌)(𝐹𝑏)) ∧ (𝐹‘(0g𝑅)) = (0g𝑌))))
564, 53, 55sylanbrc 699 1 ((𝑅 ∈ Mnd ∧ 𝐼𝑊) → 𝐹 ∈ (𝑅 MndHom 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1054   = wceq 1523  wcel 2030  wral 2941  Vcvv 3231  {csn 4210  cmpt 4762   × cxp 5141  wf 5922  cfv 5926  (class class class)co 6690  𝑓 cof 6937  𝑚 cmap 7899  Basecbs 15904  +gcplusg 15988  0gc0g 16147  s cpws 16154  Mndcmnd 17341   MndHom cmhm 17380
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-of 6939  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-oadd 7609  df-er 7787  df-map 7901  df-ixp 7951  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-sup 8389  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-nn 11059  df-2 11117  df-3 11118  df-4 11119  df-5 11120  df-6 11121  df-7 11122  df-8 11123  df-9 11124  df-n0 11331  df-z 11416  df-dec 11532  df-uz 11726  df-fz 12365  df-struct 15906  df-ndx 15907  df-slot 15908  df-base 15910  df-plusg 16001  df-mulr 16002  df-sca 16004  df-vsca 16005  df-ip 16006  df-tset 16007  df-ple 16008  df-ds 16011  df-hom 16013  df-cco 16014  df-0g 16149  df-prds 16155  df-pws 16157  df-mgm 17289  df-sgrp 17331  df-mnd 17342  df-mhm 17382
This theorem is referenced by:  pwsdiagghm  17735  pwsdiagrhm  18861
  Copyright terms: Public domain W3C validator