Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwpwssunieq Structured version   Visualization version   GIF version

Theorem pwpwssunieq 4647
 Description: The class of sets whose union is equal to a given class is included in the double power class of that class. (Contributed by BJ, 29-Apr-2021.)
Assertion
Ref Expression
pwpwssunieq {𝑥 𝑥 = 𝐴} ⊆ 𝒫 𝒫 𝐴
Distinct variable group:   𝑥,𝐴

Proof of Theorem pwpwssunieq
StepHypRef Expression
1 eqimss 3690 . . 3 ( 𝑥 = 𝐴 𝑥𝐴)
21ss2abi 3707 . 2 {𝑥 𝑥 = 𝐴} ⊆ {𝑥 𝑥𝐴}
3 pwpwab 4646 . 2 𝒫 𝒫 𝐴 = {𝑥 𝑥𝐴}
42, 3sseqtr4i 3671 1 {𝑥 𝑥 = 𝐴} ⊆ 𝒫 𝒫 𝐴
 Colors of variables: wff setvar class Syntax hints:   = wceq 1523  {cab 2637   ⊆ wss 3607  𝒫 cpw 4191  ∪ cuni 4468 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ral 2946  df-v 3233  df-in 3614  df-ss 3621  df-pw 4193  df-uni 4469 This theorem is referenced by:  toponsspwpw  20774  dmtopon  20775
 Copyright terms: Public domain W3C validator