MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwpr Structured version   Visualization version   GIF version

Theorem pwpr 4566
Description: The power set of an unordered pair. (Contributed by NM, 1-May-2009.)
Assertion
Ref Expression
pwpr 𝒫 {𝐴, 𝐵} = ({∅, {𝐴}} ∪ {{𝐵}, {𝐴, 𝐵}})

Proof of Theorem pwpr
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 sspr 4497 . . . 4 (𝑥 ⊆ {𝐴, 𝐵} ↔ ((𝑥 = ∅ ∨ 𝑥 = {𝐴}) ∨ (𝑥 = {𝐵} ∨ 𝑥 = {𝐴, 𝐵})))
2 vex 3352 . . . . . 6 𝑥 ∈ V
32elpr 4336 . . . . 5 (𝑥 ∈ {∅, {𝐴}} ↔ (𝑥 = ∅ ∨ 𝑥 = {𝐴}))
42elpr 4336 . . . . 5 (𝑥 ∈ {{𝐵}, {𝐴, 𝐵}} ↔ (𝑥 = {𝐵} ∨ 𝑥 = {𝐴, 𝐵}))
53, 4orbi12i 879 . . . 4 ((𝑥 ∈ {∅, {𝐴}} ∨ 𝑥 ∈ {{𝐵}, {𝐴, 𝐵}}) ↔ ((𝑥 = ∅ ∨ 𝑥 = {𝐴}) ∨ (𝑥 = {𝐵} ∨ 𝑥 = {𝐴, 𝐵})))
61, 5bitr4i 267 . . 3 (𝑥 ⊆ {𝐴, 𝐵} ↔ (𝑥 ∈ {∅, {𝐴}} ∨ 𝑥 ∈ {{𝐵}, {𝐴, 𝐵}}))
7 selpw 4302 . . 3 (𝑥 ∈ 𝒫 {𝐴, 𝐵} ↔ 𝑥 ⊆ {𝐴, 𝐵})
8 elun 3902 . . 3 (𝑥 ∈ ({∅, {𝐴}} ∪ {{𝐵}, {𝐴, 𝐵}}) ↔ (𝑥 ∈ {∅, {𝐴}} ∨ 𝑥 ∈ {{𝐵}, {𝐴, 𝐵}}))
96, 7, 83bitr4i 292 . 2 (𝑥 ∈ 𝒫 {𝐴, 𝐵} ↔ 𝑥 ∈ ({∅, {𝐴}} ∪ {{𝐵}, {𝐴, 𝐵}}))
109eqriv 2767 1 𝒫 {𝐴, 𝐵} = ({∅, {𝐴}} ∪ {{𝐵}, {𝐴, 𝐵}})
Colors of variables: wff setvar class
Syntax hints:  wo 826   = wceq 1630  wcel 2144  cun 3719  wss 3721  c0 4061  𝒫 cpw 4295  {csn 4314  {cpr 4316
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3an 1072  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ral 3065  df-v 3351  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-nul 4062  df-pw 4297  df-sn 4315  df-pr 4317
This theorem is referenced by:  pwpwpw0  4568  ord3ex  4984  hash2pwpr  13459  pr2pwpr  13462  prsiga  30528  prsal  41049
  Copyright terms: Public domain W3C validator