![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pwnex | Structured version Visualization version GIF version |
Description: The class of all power sets is a proper class. See also snnex 7131. (Contributed by BJ, 2-May-2021.) |
Ref | Expression |
---|---|
pwnex | ⊢ {𝑥 ∣ ∃𝑦 𝑥 = 𝒫 𝑦} ∉ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abnex 7130 | . . 3 ⊢ (∀𝑦(𝒫 𝑦 ∈ V ∧ 𝑦 ∈ 𝒫 𝑦) → ¬ {𝑥 ∣ ∃𝑦 𝑥 = 𝒫 𝑦} ∈ V) | |
2 | df-nel 3036 | . . 3 ⊢ ({𝑥 ∣ ∃𝑦 𝑥 = 𝒫 𝑦} ∉ V ↔ ¬ {𝑥 ∣ ∃𝑦 𝑥 = 𝒫 𝑦} ∈ V) | |
3 | 1, 2 | sylibr 224 | . 2 ⊢ (∀𝑦(𝒫 𝑦 ∈ V ∧ 𝑦 ∈ 𝒫 𝑦) → {𝑥 ∣ ∃𝑦 𝑥 = 𝒫 𝑦} ∉ V) |
4 | vpwex 4998 | . . 3 ⊢ 𝒫 𝑦 ∈ V | |
5 | vex 3343 | . . . 4 ⊢ 𝑦 ∈ V | |
6 | 5 | pwid 4318 | . . 3 ⊢ 𝑦 ∈ 𝒫 𝑦 |
7 | 4, 6 | pm3.2i 470 | . 2 ⊢ (𝒫 𝑦 ∈ V ∧ 𝑦 ∈ 𝒫 𝑦) |
8 | 3, 7 | mpg 1873 | 1 ⊢ {𝑥 ∣ ∃𝑦 𝑥 = 𝒫 𝑦} ∉ V |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 383 ∀wal 1630 = wceq 1632 ∃wex 1853 ∈ wcel 2139 {cab 2746 ∉ wnel 3035 Vcvv 3340 𝒫 cpw 4302 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-pow 4992 ax-un 7114 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-nel 3036 df-ral 3055 df-rex 3056 df-v 3342 df-in 3722 df-ss 3729 df-pw 4304 df-sn 4322 df-uni 4589 df-iun 4674 |
This theorem is referenced by: topnex 21002 |
Copyright terms: Public domain | W3C validator |