Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pwm1geoserALT Structured version   Visualization version   GIF version

Theorem pwm1geoserALT 42027
Description: The n-th power of a number decreased by 1 expressed by the finite geometric series 1 + 𝐴↑1 + 𝐴↑2 +... + 𝐴↑(𝑁 − 1). This alternate proof of pwm1geoser 14807 is not based on geoser 14806, but on pwdif 42026 and therefore shorter than the original proof. (Contributed by AV, 19-Aug-2021.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
pwm1geoserALT.a (𝜑𝐴 ∈ ℂ)
pwm1geoserALT.n (𝜑𝑁 ∈ ℕ0)
Assertion
Ref Expression
pwm1geoserALT (𝜑 → ((𝐴𝑁) − 1) = ((𝐴 − 1) · Σ𝑘 ∈ (0...(𝑁 − 1))(𝐴𝑘)))
Distinct variable groups:   𝐴,𝑘   𝑘,𝑁   𝜑,𝑘

Proof of Theorem pwm1geoserALT
StepHypRef Expression
1 pwm1geoserALT.n . . . . . 6 (𝜑𝑁 ∈ ℕ0)
21nn0zd 11687 . . . . 5 (𝜑𝑁 ∈ ℤ)
3 1exp 13096 . . . . 5 (𝑁 ∈ ℤ → (1↑𝑁) = 1)
42, 3syl 17 . . . 4 (𝜑 → (1↑𝑁) = 1)
54eqcomd 2777 . . 3 (𝜑 → 1 = (1↑𝑁))
65oveq2d 6812 . 2 (𝜑 → ((𝐴𝑁) − 1) = ((𝐴𝑁) − (1↑𝑁)))
7 pwm1geoserALT.a . . 3 (𝜑𝐴 ∈ ℂ)
8 1cnd 10262 . . 3 (𝜑 → 1 ∈ ℂ)
9 pwdif 42026 . . 3 ((𝑁 ∈ ℕ0𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝐴𝑁) − (1↑𝑁)) = ((𝐴 − 1) · Σ𝑘 ∈ (0..^𝑁)((𝐴𝑘) · (1↑((𝑁𝑘) − 1)))))
101, 7, 8, 9syl3anc 1476 . 2 (𝜑 → ((𝐴𝑁) − (1↑𝑁)) = ((𝐴 − 1) · Σ𝑘 ∈ (0..^𝑁)((𝐴𝑘) · (1↑((𝑁𝑘) − 1)))))
11 fzoval 12679 . . . . 5 (𝑁 ∈ ℤ → (0..^𝑁) = (0...(𝑁 − 1)))
122, 11syl 17 . . . 4 (𝜑 → (0..^𝑁) = (0...(𝑁 − 1)))
132adantr 466 . . . . . . . 8 ((𝜑𝑘 ∈ (0..^𝑁)) → 𝑁 ∈ ℤ)
14 elfzoelz 12678 . . . . . . . . 9 (𝑘 ∈ (0..^𝑁) → 𝑘 ∈ ℤ)
1514adantl 467 . . . . . . . 8 ((𝜑𝑘 ∈ (0..^𝑁)) → 𝑘 ∈ ℤ)
1613, 15zsubcld 11694 . . . . . . 7 ((𝜑𝑘 ∈ (0..^𝑁)) → (𝑁𝑘) ∈ ℤ)
17 peano2zm 11627 . . . . . . 7 ((𝑁𝑘) ∈ ℤ → ((𝑁𝑘) − 1) ∈ ℤ)
18 1exp 13096 . . . . . . 7 (((𝑁𝑘) − 1) ∈ ℤ → (1↑((𝑁𝑘) − 1)) = 1)
1916, 17, 183syl 18 . . . . . 6 ((𝜑𝑘 ∈ (0..^𝑁)) → (1↑((𝑁𝑘) − 1)) = 1)
2019oveq2d 6812 . . . . 5 ((𝜑𝑘 ∈ (0..^𝑁)) → ((𝐴𝑘) · (1↑((𝑁𝑘) − 1))) = ((𝐴𝑘) · 1))
217adantr 466 . . . . . . 7 ((𝜑𝑘 ∈ (0..^𝑁)) → 𝐴 ∈ ℂ)
22 elfzonn0 12721 . . . . . . . 8 (𝑘 ∈ (0..^𝑁) → 𝑘 ∈ ℕ0)
2322adantl 467 . . . . . . 7 ((𝜑𝑘 ∈ (0..^𝑁)) → 𝑘 ∈ ℕ0)
2421, 23expcld 13215 . . . . . 6 ((𝜑𝑘 ∈ (0..^𝑁)) → (𝐴𝑘) ∈ ℂ)
2524mulid1d 10263 . . . . 5 ((𝜑𝑘 ∈ (0..^𝑁)) → ((𝐴𝑘) · 1) = (𝐴𝑘))
2620, 25eqtrd 2805 . . . 4 ((𝜑𝑘 ∈ (0..^𝑁)) → ((𝐴𝑘) · (1↑((𝑁𝑘) − 1))) = (𝐴𝑘))
2712, 26sumeq12dv 14645 . . 3 (𝜑 → Σ𝑘 ∈ (0..^𝑁)((𝐴𝑘) · (1↑((𝑁𝑘) − 1))) = Σ𝑘 ∈ (0...(𝑁 − 1))(𝐴𝑘))
2827oveq2d 6812 . 2 (𝜑 → ((𝐴 − 1) · Σ𝑘 ∈ (0..^𝑁)((𝐴𝑘) · (1↑((𝑁𝑘) − 1)))) = ((𝐴 − 1) · Σ𝑘 ∈ (0...(𝑁 − 1))(𝐴𝑘)))
296, 10, 283eqtrd 2809 1 (𝜑 → ((𝐴𝑁) − 1) = ((𝐴 − 1) · Σ𝑘 ∈ (0...(𝑁 − 1))(𝐴𝑘)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382   = wceq 1631  wcel 2145  (class class class)co 6796  cc 10140  0cc0 10142  1c1 10143   · cmul 10147  cmin 10472  0cn0 11499  cz 11584  ...cfz 12533  ..^cfzo 12673  cexp 13067  Σcsu 14624
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4905  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7100  ax-inf2 8706  ax-cnex 10198  ax-resscn 10199  ax-1cn 10200  ax-icn 10201  ax-addcl 10202  ax-addrcl 10203  ax-mulcl 10204  ax-mulrcl 10205  ax-mulcom 10206  ax-addass 10207  ax-mulass 10208  ax-distr 10209  ax-i2m1 10210  ax-1ne0 10211  ax-1rid 10212  ax-rnegex 10213  ax-rrecex 10214  ax-cnre 10215  ax-pre-lttri 10216  ax-pre-lttrn 10217  ax-pre-ltadd 10218  ax-pre-mulgt0 10219  ax-pre-sup 10220
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-fal 1637  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-tp 4322  df-op 4324  df-uni 4576  df-int 4613  df-iun 4657  df-br 4788  df-opab 4848  df-mpt 4865  df-tr 4888  df-id 5158  df-eprel 5163  df-po 5171  df-so 5172  df-fr 5209  df-se 5210  df-we 5211  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-pred 5822  df-ord 5868  df-on 5869  df-lim 5870  df-suc 5871  df-iota 5993  df-fun 6032  df-fn 6033  df-f 6034  df-f1 6035  df-fo 6036  df-f1o 6037  df-fv 6038  df-isom 6039  df-riota 6757  df-ov 6799  df-oprab 6800  df-mpt2 6801  df-om 7217  df-1st 7319  df-2nd 7320  df-wrecs 7563  df-recs 7625  df-rdg 7663  df-1o 7717  df-oadd 7721  df-er 7900  df-en 8114  df-dom 8115  df-sdom 8116  df-fin 8117  df-sup 8508  df-oi 8575  df-card 8969  df-pnf 10282  df-mnf 10283  df-xr 10284  df-ltxr 10285  df-le 10286  df-sub 10474  df-neg 10475  df-div 10891  df-nn 11227  df-2 11285  df-3 11286  df-n0 11500  df-z 11585  df-uz 11894  df-rp 12036  df-fz 12534  df-fzo 12674  df-seq 13009  df-exp 13068  df-hash 13322  df-cj 14047  df-re 14048  df-im 14049  df-sqrt 14183  df-abs 14184  df-clim 14427  df-sum 14625
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator