Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pwinfi Structured version   Visualization version   GIF version

Theorem pwinfi 38388
Description: The powerclass of an infinite set is an infinite set, and vice-versa. (Contributed by RP, 21-Mar-2020.)
Assertion
Ref Expression
pwinfi (𝐴 ∈ (V ∖ Fin) ↔ 𝒫 𝐴 ∈ (V ∖ Fin))

Proof of Theorem pwinfi
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 vuniex 7100 . . . 4 𝑥 ∈ V
2 vpwex 4977 . . . 4 𝒫 𝑥 ∈ V
31, 2pm3.2i 447 . . 3 ( 𝑥 ∈ V ∧ 𝒫 𝑥 ∈ V)
43rgenw 3072 . 2 𝑥 ∈ V ( 𝑥 ∈ V ∧ 𝒫 𝑥 ∈ V)
5 pwinfig 38385 . 2 (∀𝑥 ∈ V ( 𝑥 ∈ V ∧ 𝒫 𝑥 ∈ V) → (𝐴 ∈ (V ∖ Fin) ↔ 𝒫 𝐴 ∈ (V ∖ Fin)))
64, 5ax-mp 5 1 (𝐴 ∈ (V ∖ Fin) ↔ 𝒫 𝐴 ∈ (V ∖ Fin))
Colors of variables: wff setvar class
Syntax hints:  wb 196  wa 382  wcel 2144  wral 3060  Vcvv 3349  cdif 3718  𝒫 cpw 4295   cuni 4572  Fincfn 8108
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034  ax-un 7095
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3or 1071  df-3an 1072  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-ral 3065  df-rex 3066  df-reu 3067  df-rab 3069  df-v 3351  df-sbc 3586  df-csb 3681  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-pss 3737  df-nul 4062  df-if 4224  df-pw 4297  df-sn 4315  df-pr 4317  df-tp 4319  df-op 4321  df-uni 4573  df-int 4610  df-iun 4654  df-br 4785  df-opab 4845  df-mpt 4862  df-tr 4885  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-ov 6795  df-oprab 6796  df-mpt2 6797  df-om 7212  df-1st 7314  df-2nd 7315  df-wrecs 7558  df-recs 7620  df-rdg 7658  df-1o 7712  df-2o 7713  df-oadd 7716  df-er 7895  df-map 8010  df-en 8109  df-dom 8110  df-sdom 8111  df-fin 8112
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator