Mathbox for Stefan O'Rear < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pwfi2en Structured version   Visualization version   GIF version

Theorem pwfi2en 38188
 Description: Finitely supported indicator functions are equinumerous to finite subsets. MOVABLE (Contributed by Stefan O'Rear, 10-Jul-2015.) (Revised by AV, 14-Jun-2020.)
Hypothesis
Ref Expression
pwfi2en.s 𝑆 = {𝑦 ∈ (2𝑜𝑚 𝐴) ∣ 𝑦 finSupp ∅}
Assertion
Ref Expression
pwfi2en (𝐴𝑉𝑆 ≈ (𝒫 𝐴 ∩ Fin))
Distinct variable groups:   𝑦,𝐴   𝑦,𝑉
Allowed substitution hint:   𝑆(𝑦)

Proof of Theorem pwfi2en
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 pwfi2en.s . . 3 𝑆 = {𝑦 ∈ (2𝑜𝑚 𝐴) ∣ 𝑦 finSupp ∅}
2 eqid 2761 . . 3 (𝑥𝑆 ↦ (𝑥 “ {1𝑜})) = (𝑥𝑆 ↦ (𝑥 “ {1𝑜}))
31, 2pwfi2f1o 38187 . 2 (𝐴𝑉 → (𝑥𝑆 ↦ (𝑥 “ {1𝑜})):𝑆1-1-onto→(𝒫 𝐴 ∩ Fin))
4 ovex 6843 . . . 4 (2𝑜𝑚 𝐴) ∈ V
51, 4rabex2 4967 . . 3 𝑆 ∈ V
65f1oen 8145 . 2 ((𝑥𝑆 ↦ (𝑥 “ {1𝑜})):𝑆1-1-onto→(𝒫 𝐴 ∩ Fin) → 𝑆 ≈ (𝒫 𝐴 ∩ Fin))
73, 6syl 17 1 (𝐴𝑉𝑆 ≈ (𝒫 𝐴 ∩ Fin))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   = wceq 1632   ∈ wcel 2140  {crab 3055   ∩ cin 3715  ∅c0 4059  𝒫 cpw 4303  {csn 4322   class class class wbr 4805   ↦ cmpt 4882  ◡ccnv 5266   “ cima 5270  –1-1-onto→wf1o 6049  (class class class)co 6815  1𝑜c1o 7724  2𝑜c2o 7725   ↑𝑚 cmap 8026   ≈ cen 8121  Fincfn 8124   finSupp cfsupp 8443 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1989  ax-6 2055  ax-7 2091  ax-8 2142  ax-9 2149  ax-10 2169  ax-11 2184  ax-12 2197  ax-13 2392  ax-ext 2741  ax-rep 4924  ax-sep 4934  ax-nul 4942  ax-pow 4993  ax-pr 5056  ax-un 7116 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2048  df-eu 2612  df-mo 2613  df-clab 2748  df-cleq 2754  df-clel 2757  df-nfc 2892  df-ne 2934  df-ral 3056  df-rex 3057  df-reu 3058  df-rab 3060  df-v 3343  df-sbc 3578  df-csb 3676  df-dif 3719  df-un 3721  df-in 3723  df-ss 3730  df-pss 3732  df-nul 4060  df-if 4232  df-pw 4305  df-sn 4323  df-pr 4325  df-tp 4327  df-op 4329  df-uni 4590  df-iun 4675  df-br 4806  df-opab 4866  df-mpt 4883  df-tr 4906  df-id 5175  df-eprel 5180  df-po 5188  df-so 5189  df-fr 5226  df-we 5228  df-xp 5273  df-rel 5274  df-cnv 5275  df-co 5276  df-dm 5277  df-rn 5278  df-res 5279  df-ima 5280  df-ord 5888  df-on 5889  df-suc 5891  df-iota 6013  df-fun 6052  df-fn 6053  df-f 6054  df-f1 6055  df-fo 6056  df-f1o 6057  df-fv 6058  df-ov 6818  df-oprab 6819  df-mpt2 6820  df-1st 7335  df-2nd 7336  df-supp 7466  df-1o 7731  df-2o 7732  df-map 8028  df-en 8125  df-fsupp 8444 This theorem is referenced by:  frlmpwfi  38189
 Copyright terms: Public domain W3C validator