![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pweqi | Structured version Visualization version GIF version |
Description: Equality inference for power class. (Contributed by NM, 27-Nov-2013.) |
Ref | Expression |
---|---|
pweqi.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
pweqi | ⊢ 𝒫 𝐴 = 𝒫 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pweqi.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | pweq 4306 | . 2 ⊢ (𝐴 = 𝐵 → 𝒫 𝐴 = 𝒫 𝐵) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝒫 𝐴 = 𝒫 𝐵 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1632 𝒫 cpw 4303 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1989 ax-6 2055 ax-7 2091 ax-9 2149 ax-10 2169 ax-11 2184 ax-12 2197 ax-13 2392 ax-ext 2741 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2048 df-clab 2748 df-cleq 2754 df-clel 2757 df-in 3723 df-ss 3730 df-pw 4305 |
This theorem is referenced by: pwfi 8429 rankxplim 8918 pwcda1 9229 fin23lem17 9373 mnfnre 10295 qtopres 21724 hmphdis 21822 ust0 22245 umgrpredgv 26256 issubgr 26384 uhgrissubgr 26388 cusgredg 26552 cffldtocusgr 26575 konigsbergiedgw 27422 shsspwh 28434 circtopn 30235 rankeq1o 32606 onsucsuccmpi 32770 elrfi 37778 islmodfg 38160 clsk1indlem4 38863 clsk1indlem1 38864 clsk1independent 38865 omef 41235 caragensplit 41239 caragenelss 41240 carageneld 41241 omeunile 41244 caragensspw 41248 0ome 41268 isomennd 41270 ovn02 41307 lcoop 42729 lincvalsc0 42739 linc0scn0 42741 lincdifsn 42742 linc1 42743 lspsslco 42755 lincresunit3lem2 42798 lincresunit3 42799 |
Copyright terms: Public domain | W3C validator |