![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pweqd | Structured version Visualization version GIF version |
Description: Equality deduction for power class. (Contributed by NM, 27-Nov-2013.) |
Ref | Expression |
---|---|
pweqd.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
pweqd | ⊢ (𝜑 → 𝒫 𝐴 = 𝒫 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pweqd.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | pweq 4269 | . 2 ⊢ (𝐴 = 𝐵 → 𝒫 𝐴 = 𝒫 𝐵) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 𝒫 𝐴 = 𝒫 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1596 𝒫 cpw 4266 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1835 ax-4 1850 ax-5 1952 ax-6 2018 ax-7 2054 ax-9 2112 ax-10 2132 ax-11 2147 ax-12 2160 ax-13 2355 ax-ext 2704 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1599 df-ex 1818 df-nf 1823 df-sb 2011 df-clab 2711 df-cleq 2717 df-clel 2720 df-in 3687 df-ss 3694 df-pw 4268 |
This theorem is referenced by: undefval 7522 pmvalg 7985 marypha1lem 8455 marypha1 8456 r1val3 8814 ackbij1lem5 9159 ackbij2lem2 9175 ackbij2lem3 9176 r1om 9179 isfin2 9229 hsmexlem8 9359 vdwmc 15805 hashbcval 15829 ismre 16373 mrcfval 16391 mrisval 16413 mreexexlemd 16427 brssc 16596 lubfval 17100 glbfval 17113 isclat 17231 issubm 17469 issubg 17716 cntzfval 17874 symgval 17920 lsmfval 18174 lsmpropd 18211 pj1fval 18228 issubrg 18903 lssset 19057 lspfval 19096 lsppropd 19141 islbs 19199 sraval 19299 aspval 19451 opsrval 19597 ply1frcl 19806 evls1fval 19807 ocvfval 20133 isobs 20187 islinds 20271 basis1 20877 baspartn 20881 cldval 20950 ntrfval 20951 clsfval 20952 mretopd 21019 neifval 21026 lpfval 21065 cncls2 21200 iscnrm 21250 iscnrm2 21265 2ndcsep 21385 kgenval 21461 xkoval 21513 dfac14 21544 qtopval 21621 qtopval2 21622 isfbas 21755 trfbas2 21769 flimval 21889 elflim 21897 flimclslem 21910 fclsfnflim 21953 fclscmp 21956 tsmsfbas 22053 tsmsval2 22055 ustval 22128 utopval 22158 mopnfss 22370 setsmstopn 22405 met2ndc 22450 istrkgb 25474 isuhgr 26075 isushgr 26076 isuhgrop 26085 uhgrun 26089 uhgrstrrepe 26093 isupgr 26099 upgrop 26109 isumgr 26110 upgrun 26133 umgrun 26135 isuspgr 26167 isusgr 26168 isuspgrop 26176 isusgrop 26177 ausgrusgrb 26180 usgrstrrepe 26247 issubgr 26283 uhgrspansubgrlem 26302 usgrexi 26468 1hevtxdg1 26533 umgr2v2e 26552 ismeas 30492 omsval 30585 omscl 30587 omsf 30588 oms0 30589 carsgval 30595 omsmeas 30615 erdszelem3 31403 erdsze 31412 kur14 31426 iscvm 31469 mpstval 31660 mclsval 31688 madeval 32162 heibor 33852 idlval 34044 igenval 34092 paddfval 35503 pclfvalN 35595 polfvalN 35610 docaffvalN 36829 docafvalN 36830 djaffvalN 36841 djafvalN 36842 dochffval 37057 dochfval 37058 djhffval 37104 djhfval 37105 lpolsetN 37190 lcdlss2N 37328 mzpclval 37707 dfac21 38055 islmodfg 38058 islssfg 38059 rgspnval 38157 rfovd 38714 fsovrfovd 38722 gneispace2 38849 sge0val 41003 ismea 41088 psmeasure 41108 caragenval 41130 isome 41131 omeunile 41142 isomennd 41168 ovnval 41178 hspmbl 41266 isvonmbl 41275 issubmgm 42216 lincop 42624 lcoop 42627 islininds 42662 ldepsnlinc 42724 |
Copyright terms: Public domain | W3C validator |