![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pwen | Structured version Visualization version GIF version |
Description: If two sets are equinumerous, then their power sets are equinumerous. Proposition 10.15 of [TakeutiZaring] p. 87. (Contributed by NM, 29-Jan-2004.) (Revised by Mario Carneiro, 9-Apr-2015.) |
Ref | Expression |
---|---|
pwen | ⊢ (𝐴 ≈ 𝐵 → 𝒫 𝐴 ≈ 𝒫 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relen 8077 | . . . 4 ⊢ Rel ≈ | |
2 | 1 | brrelexi 5267 | . . 3 ⊢ (𝐴 ≈ 𝐵 → 𝐴 ∈ V) |
3 | pw2eng 8182 | . . 3 ⊢ (𝐴 ∈ V → 𝒫 𝐴 ≈ (2𝑜 ↑𝑚 𝐴)) | |
4 | 2, 3 | syl 17 | . 2 ⊢ (𝐴 ≈ 𝐵 → 𝒫 𝐴 ≈ (2𝑜 ↑𝑚 𝐴)) |
5 | 2onn 7840 | . . . . . 6 ⊢ 2𝑜 ∈ ω | |
6 | 5 | elexi 3317 | . . . . 5 ⊢ 2𝑜 ∈ V |
7 | 6 | enref 8105 | . . . 4 ⊢ 2𝑜 ≈ 2𝑜 |
8 | mapen 8240 | . . . 4 ⊢ ((2𝑜 ≈ 2𝑜 ∧ 𝐴 ≈ 𝐵) → (2𝑜 ↑𝑚 𝐴) ≈ (2𝑜 ↑𝑚 𝐵)) | |
9 | 7, 8 | mpan 708 | . . 3 ⊢ (𝐴 ≈ 𝐵 → (2𝑜 ↑𝑚 𝐴) ≈ (2𝑜 ↑𝑚 𝐵)) |
10 | 1 | brrelex2i 5268 | . . . 4 ⊢ (𝐴 ≈ 𝐵 → 𝐵 ∈ V) |
11 | pw2eng 8182 | . . . 4 ⊢ (𝐵 ∈ V → 𝒫 𝐵 ≈ (2𝑜 ↑𝑚 𝐵)) | |
12 | ensym 8121 | . . . 4 ⊢ (𝒫 𝐵 ≈ (2𝑜 ↑𝑚 𝐵) → (2𝑜 ↑𝑚 𝐵) ≈ 𝒫 𝐵) | |
13 | 10, 11, 12 | 3syl 18 | . . 3 ⊢ (𝐴 ≈ 𝐵 → (2𝑜 ↑𝑚 𝐵) ≈ 𝒫 𝐵) |
14 | entr 8124 | . . 3 ⊢ (((2𝑜 ↑𝑚 𝐴) ≈ (2𝑜 ↑𝑚 𝐵) ∧ (2𝑜 ↑𝑚 𝐵) ≈ 𝒫 𝐵) → (2𝑜 ↑𝑚 𝐴) ≈ 𝒫 𝐵) | |
15 | 9, 13, 14 | syl2anc 696 | . 2 ⊢ (𝐴 ≈ 𝐵 → (2𝑜 ↑𝑚 𝐴) ≈ 𝒫 𝐵) |
16 | entr 8124 | . 2 ⊢ ((𝒫 𝐴 ≈ (2𝑜 ↑𝑚 𝐴) ∧ (2𝑜 ↑𝑚 𝐴) ≈ 𝒫 𝐵) → 𝒫 𝐴 ≈ 𝒫 𝐵) | |
17 | 4, 15, 16 | syl2anc 696 | 1 ⊢ (𝐴 ≈ 𝐵 → 𝒫 𝐴 ≈ 𝒫 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2103 Vcvv 3304 𝒫 cpw 4266 class class class wbr 4760 (class class class)co 6765 ωcom 7182 2𝑜c2o 7674 ↑𝑚 cmap 7974 ≈ cen 8069 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1835 ax-4 1850 ax-5 1952 ax-6 2018 ax-7 2054 ax-8 2105 ax-9 2112 ax-10 2132 ax-11 2147 ax-12 2160 ax-13 2355 ax-ext 2704 ax-sep 4889 ax-nul 4897 ax-pow 4948 ax-pr 5011 ax-un 7066 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1599 df-ex 1818 df-nf 1823 df-sb 2011 df-eu 2575 df-mo 2576 df-clab 2711 df-cleq 2717 df-clel 2720 df-nfc 2855 df-ne 2897 df-ral 3019 df-rex 3020 df-rab 3023 df-v 3306 df-sbc 3542 df-csb 3640 df-dif 3683 df-un 3685 df-in 3687 df-ss 3694 df-pss 3696 df-nul 4024 df-if 4195 df-pw 4268 df-sn 4286 df-pr 4288 df-tp 4290 df-op 4292 df-uni 4545 df-iun 4630 df-br 4761 df-opab 4821 df-mpt 4838 df-tr 4861 df-id 5128 df-eprel 5133 df-po 5139 df-so 5140 df-fr 5177 df-we 5179 df-xp 5224 df-rel 5225 df-cnv 5226 df-co 5227 df-dm 5228 df-rn 5229 df-res 5230 df-ima 5231 df-ord 5839 df-on 5840 df-lim 5841 df-suc 5842 df-iota 5964 df-fun 6003 df-fn 6004 df-f 6005 df-f1 6006 df-fo 6007 df-f1o 6008 df-fv 6009 df-ov 6768 df-oprab 6769 df-mpt2 6770 df-om 7183 df-1st 7285 df-2nd 7286 df-1o 7680 df-2o 7681 df-er 7862 df-map 7976 df-en 8073 |
This theorem is referenced by: pwfi 8377 dfac12k 9082 pwcdaidm 9130 pwsdompw 9139 ackbij2lem2 9175 engch 9563 gchdomtri 9564 canthp1lem1 9587 gchcdaidm 9603 gchxpidm 9604 gchpwdom 9605 gchhar 9614 inar1 9710 rexpen 15077 enrelmap 38710 enrelmapr 38711 |
Copyright terms: Public domain | W3C validator |