MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwel Structured version   Visualization version   GIF version

Theorem pwel 5048
Description: Membership of a power class. Exercise 10 of [Enderton] p. 26. (Contributed by NM, 13-Jan-2007.)
Assertion
Ref Expression
pwel (𝐴𝐵 → 𝒫 𝐴 ∈ 𝒫 𝒫 𝐵)

Proof of Theorem pwel
StepHypRef Expression
1 elssuni 4601 . . 3 (𝐴𝐵𝐴 𝐵)
2 sspwb 5045 . . 3 (𝐴 𝐵 ↔ 𝒫 𝐴 ⊆ 𝒫 𝐵)
31, 2sylib 208 . 2 (𝐴𝐵 → 𝒫 𝐴 ⊆ 𝒫 𝐵)
4 pwexg 4978 . . 3 (𝐴𝐵 → 𝒫 𝐴 ∈ V)
5 elpwg 4303 . . 3 (𝒫 𝐴 ∈ V → (𝒫 𝐴 ∈ 𝒫 𝒫 𝐵 ↔ 𝒫 𝐴 ⊆ 𝒫 𝐵))
64, 5syl 17 . 2 (𝐴𝐵 → (𝒫 𝐴 ∈ 𝒫 𝒫 𝐵 ↔ 𝒫 𝐴 ⊆ 𝒫 𝐵))
73, 6mpbird 247 1 (𝐴𝐵 → 𝒫 𝐴 ∈ 𝒫 𝒫 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wcel 2144  Vcvv 3349  wss 3721  𝒫 cpw 4295   cuni 4572
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3an 1072  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-v 3351  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-nul 4062  df-pw 4297  df-sn 4315  df-pr 4317  df-uni 4573
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator