![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pwcda1 | Structured version Visualization version GIF version |
Description: The sum of a powerset with itself is equipotent to the successor powerset. (Contributed by Mario Carneiro, 15-May-2015.) |
Ref | Expression |
---|---|
pwcda1 | ⊢ (𝐴 ∈ 𝑉 → (𝒫 𝐴 +𝑐 𝒫 𝐴) ≈ 𝒫 (𝐴 +𝑐 1𝑜)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1on 7612 | . . . 4 ⊢ 1𝑜 ∈ On | |
2 | pwcdaen 9045 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 1𝑜 ∈ On) → 𝒫 (𝐴 +𝑐 1𝑜) ≈ (𝒫 𝐴 × 𝒫 1𝑜)) | |
3 | 1, 2 | mpan2 707 | . . 3 ⊢ (𝐴 ∈ 𝑉 → 𝒫 (𝐴 +𝑐 1𝑜) ≈ (𝒫 𝐴 × 𝒫 1𝑜)) |
4 | pwpw0 4376 | . . . . . 6 ⊢ 𝒫 {∅} = {∅, {∅}} | |
5 | df1o2 7617 | . . . . . . 7 ⊢ 1𝑜 = {∅} | |
6 | 5 | pweqi 4195 | . . . . . 6 ⊢ 𝒫 1𝑜 = 𝒫 {∅} |
7 | df2o2 7619 | . . . . . 6 ⊢ 2𝑜 = {∅, {∅}} | |
8 | 4, 6, 7 | 3eqtr4i 2683 | . . . . 5 ⊢ 𝒫 1𝑜 = 2𝑜 |
9 | 8 | xpeq2i 5170 | . . . 4 ⊢ (𝒫 𝐴 × 𝒫 1𝑜) = (𝒫 𝐴 × 2𝑜) |
10 | pwexg 4880 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → 𝒫 𝐴 ∈ V) | |
11 | xp2cda 9040 | . . . . 5 ⊢ (𝒫 𝐴 ∈ V → (𝒫 𝐴 × 2𝑜) = (𝒫 𝐴 +𝑐 𝒫 𝐴)) | |
12 | 10, 11 | syl 17 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → (𝒫 𝐴 × 2𝑜) = (𝒫 𝐴 +𝑐 𝒫 𝐴)) |
13 | 9, 12 | syl5eq 2697 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (𝒫 𝐴 × 𝒫 1𝑜) = (𝒫 𝐴 +𝑐 𝒫 𝐴)) |
14 | 3, 13 | breqtrd 4711 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝒫 (𝐴 +𝑐 1𝑜) ≈ (𝒫 𝐴 +𝑐 𝒫 𝐴)) |
15 | 14 | ensymd 8048 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝒫 𝐴 +𝑐 𝒫 𝐴) ≈ 𝒫 (𝐴 +𝑐 1𝑜)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1523 ∈ wcel 2030 Vcvv 3231 ∅c0 3948 𝒫 cpw 4191 {csn 4210 {cpr 4212 class class class wbr 4685 × cxp 5141 Oncon0 5761 (class class class)co 6690 1𝑜c1o 7598 2𝑜c2o 7599 ≈ cen 7994 +𝑐 ccda 9027 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-ral 2946 df-rex 2947 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-int 4508 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-ord 5764 df-on 5765 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-1st 7210 df-2nd 7211 df-1o 7605 df-2o 7606 df-er 7787 df-map 7901 df-en 7998 df-dom 7999 df-cda 9028 |
This theorem is referenced by: pwcdaidm 9055 cdalepw 9056 pwsdompw 9064 gchcdaidm 9528 gchpwdom 9530 |
Copyright terms: Public domain | W3C validator |