![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pw2eng | Structured version Visualization version GIF version |
Description: The power set of a set is equinumerous to set exponentiation with a base of ordinal 2𝑜. (Contributed by FL, 22-Feb-2011.) (Revised by Mario Carneiro, 1-Jul-2015.) |
Ref | Expression |
---|---|
pw2eng | ⊢ (𝐴 ∈ 𝑉 → 𝒫 𝐴 ≈ (2𝑜 ↑𝑚 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pwexg 4978 | . . 3 ⊢ (𝐴 ∈ 𝑉 → 𝒫 𝐴 ∈ V) | |
2 | ovexd 6824 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ({∅, {∅}} ↑𝑚 𝐴) ∈ V) | |
3 | id 22 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ 𝑉) | |
4 | 0ex 4921 | . . . . 5 ⊢ ∅ ∈ V | |
5 | 4 | a1i 11 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ∅ ∈ V) |
6 | p0ex 4981 | . . . . 5 ⊢ {∅} ∈ V | |
7 | 6 | a1i 11 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → {∅} ∈ V) |
8 | 0nep0 4964 | . . . . 5 ⊢ ∅ ≠ {∅} | |
9 | 8 | a1i 11 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ∅ ≠ {∅}) |
10 | eqid 2770 | . . . 4 ⊢ (𝑥 ∈ 𝒫 𝐴 ↦ (𝑧 ∈ 𝐴 ↦ if(𝑧 ∈ 𝑥, {∅}, ∅))) = (𝑥 ∈ 𝒫 𝐴 ↦ (𝑧 ∈ 𝐴 ↦ if(𝑧 ∈ 𝑥, {∅}, ∅))) | |
11 | 3, 5, 7, 9, 10 | pw2f1o 8220 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (𝑥 ∈ 𝒫 𝐴 ↦ (𝑧 ∈ 𝐴 ↦ if(𝑧 ∈ 𝑥, {∅}, ∅))):𝒫 𝐴–1-1-onto→({∅, {∅}} ↑𝑚 𝐴)) |
12 | f1oen2g 8125 | . . 3 ⊢ ((𝒫 𝐴 ∈ V ∧ ({∅, {∅}} ↑𝑚 𝐴) ∈ V ∧ (𝑥 ∈ 𝒫 𝐴 ↦ (𝑧 ∈ 𝐴 ↦ if(𝑧 ∈ 𝑥, {∅}, ∅))):𝒫 𝐴–1-1-onto→({∅, {∅}} ↑𝑚 𝐴)) → 𝒫 𝐴 ≈ ({∅, {∅}} ↑𝑚 𝐴)) | |
13 | 1, 2, 11, 12 | syl3anc 1475 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝒫 𝐴 ≈ ({∅, {∅}} ↑𝑚 𝐴)) |
14 | df2o2 7727 | . . 3 ⊢ 2𝑜 = {∅, {∅}} | |
15 | 14 | oveq1i 6802 | . 2 ⊢ (2𝑜 ↑𝑚 𝐴) = ({∅, {∅}} ↑𝑚 𝐴) |
16 | 13, 15 | syl6breqr 4826 | 1 ⊢ (𝐴 ∈ 𝑉 → 𝒫 𝐴 ≈ (2𝑜 ↑𝑚 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2144 ≠ wne 2942 Vcvv 3349 ∅c0 4061 ifcif 4223 𝒫 cpw 4295 {csn 4314 {cpr 4316 class class class wbr 4784 ↦ cmpt 4861 –1-1-onto→wf1o 6030 (class class class)co 6792 2𝑜c2o 7706 ↑𝑚 cmap 8008 ≈ cen 8105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-8 2146 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 ax-sep 4912 ax-nul 4920 ax-pow 4971 ax-pr 5034 ax-un 7095 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3an 1072 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2049 df-eu 2621 df-mo 2622 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-ne 2943 df-ral 3065 df-rex 3066 df-rab 3069 df-v 3351 df-sbc 3586 df-dif 3724 df-un 3726 df-in 3728 df-ss 3735 df-nul 4062 df-if 4224 df-pw 4297 df-sn 4315 df-pr 4317 df-op 4321 df-uni 4573 df-br 4785 df-opab 4845 df-mpt 4862 df-id 5157 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-ov 6795 df-oprab 6796 df-mpt2 6797 df-1o 7712 df-2o 7713 df-map 8010 df-en 8109 |
This theorem is referenced by: pw2en 8222 pwen 8288 mappwen 9134 pwcdaen 9208 ackbij1lem5 9247 hauspwdom 21524 enrelmap 38810 |
Copyright terms: Public domain | W3C validator |