Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ptunimpt Structured version   Visualization version   GIF version

Theorem ptunimpt 21619
 Description: Base set of a product topology given by substitution. (Contributed by Stefan O'Rear, 22-Feb-2015.)
Hypothesis
Ref Expression
ptunimpt.j 𝐽 = (∏t‘(𝑥𝐴𝐾))
Assertion
Ref Expression
ptunimpt ((𝐴𝑉 ∧ ∀𝑥𝐴 𝐾 ∈ Top) → X𝑥𝐴 𝐾 = 𝐽)
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝐽(𝑥)   𝐾(𝑥)   𝑉(𝑥)

Proof of Theorem ptunimpt
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eqid 2771 . . . . . . . . 9 (𝑥𝐴𝐾) = (𝑥𝐴𝐾)
21fvmpt2 6433 . . . . . . . 8 ((𝑥𝐴𝐾 ∈ Top) → ((𝑥𝐴𝐾)‘𝑥) = 𝐾)
32eqcomd 2777 . . . . . . 7 ((𝑥𝐴𝐾 ∈ Top) → 𝐾 = ((𝑥𝐴𝐾)‘𝑥))
43unieqd 4584 . . . . . 6 ((𝑥𝐴𝐾 ∈ Top) → 𝐾 = ((𝑥𝐴𝐾)‘𝑥))
54ralimiaa 3100 . . . . 5 (∀𝑥𝐴 𝐾 ∈ Top → ∀𝑥𝐴 𝐾 = ((𝑥𝐴𝐾)‘𝑥))
65adantl 467 . . . 4 ((𝐴𝑉 ∧ ∀𝑥𝐴 𝐾 ∈ Top) → ∀𝑥𝐴 𝐾 = ((𝑥𝐴𝐾)‘𝑥))
7 ixpeq2 8076 . . . 4 (∀𝑥𝐴 𝐾 = ((𝑥𝐴𝐾)‘𝑥) → X𝑥𝐴 𝐾 = X𝑥𝐴 ((𝑥𝐴𝐾)‘𝑥))
86, 7syl 17 . . 3 ((𝐴𝑉 ∧ ∀𝑥𝐴 𝐾 ∈ Top) → X𝑥𝐴 𝐾 = X𝑥𝐴 ((𝑥𝐴𝐾)‘𝑥))
9 nffvmpt1 6340 . . . . 5 𝑥((𝑥𝐴𝐾)‘𝑦)
109nfuni 4580 . . . 4 𝑥 ((𝑥𝐴𝐾)‘𝑦)
11 nfcv 2913 . . . 4 𝑦 ((𝑥𝐴𝐾)‘𝑥)
12 fveq2 6332 . . . . 5 (𝑦 = 𝑥 → ((𝑥𝐴𝐾)‘𝑦) = ((𝑥𝐴𝐾)‘𝑥))
1312unieqd 4584 . . . 4 (𝑦 = 𝑥 ((𝑥𝐴𝐾)‘𝑦) = ((𝑥𝐴𝐾)‘𝑥))
1410, 11, 13cbvixp 8079 . . 3 X𝑦𝐴 ((𝑥𝐴𝐾)‘𝑦) = X𝑥𝐴 ((𝑥𝐴𝐾)‘𝑥)
158, 14syl6eqr 2823 . 2 ((𝐴𝑉 ∧ ∀𝑥𝐴 𝐾 ∈ Top) → X𝑥𝐴 𝐾 = X𝑦𝐴 ((𝑥𝐴𝐾)‘𝑦))
161fmpt 6523 . . 3 (∀𝑥𝐴 𝐾 ∈ Top ↔ (𝑥𝐴𝐾):𝐴⟶Top)
17 ptunimpt.j . . . 4 𝐽 = (∏t‘(𝑥𝐴𝐾))
1817ptuni 21618 . . 3 ((𝐴𝑉 ∧ (𝑥𝐴𝐾):𝐴⟶Top) → X𝑦𝐴 ((𝑥𝐴𝐾)‘𝑦) = 𝐽)
1916, 18sylan2b 581 . 2 ((𝐴𝑉 ∧ ∀𝑥𝐴 𝐾 ∈ Top) → X𝑦𝐴 ((𝑥𝐴𝐾)‘𝑦) = 𝐽)
2015, 19eqtrd 2805 1 ((𝐴𝑉 ∧ ∀𝑥𝐴 𝐾 ∈ Top) → X𝑥𝐴 𝐾 = 𝐽)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 382   = wceq 1631   ∈ wcel 2145  ∀wral 3061  ∪ cuni 4574   ↦ cmpt 4863  ⟶wf 6027  ‘cfv 6031  Xcixp 8062  ∏tcpt 16307  Topctop 20918 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-int 4612  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-om 7213  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-1o 7713  df-oadd 7717  df-er 7896  df-ixp 8063  df-en 8110  df-fin 8113  df-fi 8473  df-topgen 16312  df-pt 16313  df-top 20919  df-bases 20971 This theorem is referenced by:  pttopon  21620  kelac1  38159
 Copyright terms: Public domain W3C validator