MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ptpjpre2 Structured version   Visualization version   GIF version

Theorem ptpjpre2 21431
Description: The basis for a product topology is a basis. (Contributed by Mario Carneiro, 3-Feb-2015.)
Hypotheses
Ref Expression
ptbas.1 𝐵 = {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))}
ptbasfi.2 𝑋 = X𝑛𝐴 (𝐹𝑛)
Assertion
Ref Expression
ptpjpre2 (((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝐼𝐴𝑈 ∈ (𝐹𝐼))) → ((𝑤𝑋 ↦ (𝑤𝐼)) “ 𝑈) ∈ 𝐵)
Distinct variable groups:   𝐵,𝑛   𝑤,𝑔,𝑥,𝑦,𝑛,𝐼   𝑧,𝑔,𝐴,𝑛,𝑤,𝑥,𝑦   𝑈,𝑔,𝑛,𝑤,𝑥,𝑦   𝑔,𝐹,𝑛,𝑤,𝑥,𝑦,𝑧   𝑔,𝑋,𝑤,𝑥,𝑧   𝑔,𝑉,𝑛,𝑤,𝑥,𝑦,𝑧
Allowed substitution hints:   𝐵(𝑥,𝑦,𝑧,𝑤,𝑔)   𝑈(𝑧)   𝐼(𝑧)   𝑋(𝑦,𝑛)

Proof of Theorem ptpjpre2
StepHypRef Expression
1 ptbasfi.2 . . 3 𝑋 = X𝑛𝐴 (𝐹𝑛)
21ptpjpre1 21422 . 2 (((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝐼𝐴𝑈 ∈ (𝐹𝐼))) → ((𝑤𝑋 ↦ (𝑤𝐼)) “ 𝑈) = X𝑛𝐴 if(𝑛 = 𝐼, 𝑈, (𝐹𝑛)))
3 ptbas.1 . . 3 𝐵 = {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))}
4 simpll 805 . . 3 (((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝐼𝐴𝑈 ∈ (𝐹𝐼))) → 𝐴𝑉)
5 snfi 8079 . . . 4 {𝐼} ∈ Fin
65a1i 11 . . 3 (((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝐼𝐴𝑈 ∈ (𝐹𝐼))) → {𝐼} ∈ Fin)
7 simprr 811 . . . . . 6 (((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝐼𝐴𝑈 ∈ (𝐹𝐼))) → 𝑈 ∈ (𝐹𝐼))
87ad2antrr 762 . . . . 5 (((((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝐼𝐴𝑈 ∈ (𝐹𝐼))) ∧ 𝑛𝐴) ∧ 𝑛 = 𝐼) → 𝑈 ∈ (𝐹𝐼))
9 simpr 476 . . . . . 6 (((((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝐼𝐴𝑈 ∈ (𝐹𝐼))) ∧ 𝑛𝐴) ∧ 𝑛 = 𝐼) → 𝑛 = 𝐼)
109fveq2d 6233 . . . . 5 (((((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝐼𝐴𝑈 ∈ (𝐹𝐼))) ∧ 𝑛𝐴) ∧ 𝑛 = 𝐼) → (𝐹𝑛) = (𝐹𝐼))
118, 10eleqtrrd 2733 . . . 4 (((((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝐼𝐴𝑈 ∈ (𝐹𝐼))) ∧ 𝑛𝐴) ∧ 𝑛 = 𝐼) → 𝑈 ∈ (𝐹𝑛))
12 simplr 807 . . . . . . 7 (((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝐼𝐴𝑈 ∈ (𝐹𝐼))) → 𝐹:𝐴⟶Top)
1312ffvelrnda 6399 . . . . . 6 ((((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝐼𝐴𝑈 ∈ (𝐹𝐼))) ∧ 𝑛𝐴) → (𝐹𝑛) ∈ Top)
14 eqid 2651 . . . . . . 7 (𝐹𝑛) = (𝐹𝑛)
1514topopn 20759 . . . . . 6 ((𝐹𝑛) ∈ Top → (𝐹𝑛) ∈ (𝐹𝑛))
1613, 15syl 17 . . . . 5 ((((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝐼𝐴𝑈 ∈ (𝐹𝐼))) ∧ 𝑛𝐴) → (𝐹𝑛) ∈ (𝐹𝑛))
1716adantr 480 . . . 4 (((((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝐼𝐴𝑈 ∈ (𝐹𝐼))) ∧ 𝑛𝐴) ∧ ¬ 𝑛 = 𝐼) → (𝐹𝑛) ∈ (𝐹𝑛))
1811, 17ifclda 4153 . . 3 ((((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝐼𝐴𝑈 ∈ (𝐹𝐼))) ∧ 𝑛𝐴) → if(𝑛 = 𝐼, 𝑈, (𝐹𝑛)) ∈ (𝐹𝑛))
19 eldifsni 4353 . . . . . 6 (𝑛 ∈ (𝐴 ∖ {𝐼}) → 𝑛𝐼)
2019neneqd 2828 . . . . 5 (𝑛 ∈ (𝐴 ∖ {𝐼}) → ¬ 𝑛 = 𝐼)
2120adantl 481 . . . 4 ((((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝐼𝐴𝑈 ∈ (𝐹𝐼))) ∧ 𝑛 ∈ (𝐴 ∖ {𝐼})) → ¬ 𝑛 = 𝐼)
2221iffalsed 4130 . . 3 ((((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝐼𝐴𝑈 ∈ (𝐹𝐼))) ∧ 𝑛 ∈ (𝐴 ∖ {𝐼})) → if(𝑛 = 𝐼, 𝑈, (𝐹𝑛)) = (𝐹𝑛))
233, 4, 6, 18, 22elptr2 21425 . 2 (((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝐼𝐴𝑈 ∈ (𝐹𝐼))) → X𝑛𝐴 if(𝑛 = 𝐼, 𝑈, (𝐹𝑛)) ∈ 𝐵)
242, 23eqeltrd 2730 1 (((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝐼𝐴𝑈 ∈ (𝐹𝐼))) → ((𝑤𝑋 ↦ (𝑤𝐼)) “ 𝑈) ∈ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 383  w3a 1054   = wceq 1523  wex 1744  wcel 2030  {cab 2637  wral 2941  wrex 2942  cdif 3604  ifcif 4119  {csn 4210   cuni 4468  cmpt 4762  ccnv 5142  cima 5146   Fn wfn 5921  wf 5922  cfv 5926  Xcixp 7950  Fincfn 7997  Topctop 20746
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-om 7108  df-1o 7605  df-ixp 7951  df-en 7998  df-fin 8001  df-top 20747
This theorem is referenced by:  ptbasfi  21432  ptpjcn  21462
  Copyright terms: Public domain W3C validator