MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ptpjpre1 Structured version   Visualization version   GIF version

Theorem ptpjpre1 21422
Description: The preimage of a projection function can be expressed as an indexed cartesian product. (Contributed by Mario Carneiro, 6-Feb-2015.)
Hypothesis
Ref Expression
ptpjpre1.1 𝑋 = X𝑘𝐴 (𝐹𝑘)
Assertion
Ref Expression
ptpjpre1 (((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝐼𝐴𝑈 ∈ (𝐹𝐼))) → ((𝑤𝑋 ↦ (𝑤𝐼)) “ 𝑈) = X𝑘𝐴 if(𝑘 = 𝐼, 𝑈, (𝐹𝑘)))
Distinct variable groups:   𝑤,𝑘,𝐴   𝑘,𝐹,𝑤   𝑘,𝐼,𝑤   𝑈,𝑘,𝑤   𝑘,𝑉,𝑤   𝑤,𝑋
Allowed substitution hint:   𝑋(𝑘)

Proof of Theorem ptpjpre1
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 simplrl 817 . . . . . . 7 ((((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝐼𝐴𝑈 ∈ (𝐹𝐼))) ∧ 𝑤𝑋) → 𝐼𝐴)
2 vex 3234 . . . . . . . . . . 11 𝑤 ∈ V
32elixp 7957 . . . . . . . . . 10 (𝑤X𝑘𝐴 (𝐹𝑘) ↔ (𝑤 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑤𝑘) ∈ (𝐹𝑘)))
43simprbi 479 . . . . . . . . 9 (𝑤X𝑘𝐴 (𝐹𝑘) → ∀𝑘𝐴 (𝑤𝑘) ∈ (𝐹𝑘))
5 ptpjpre1.1 . . . . . . . . 9 𝑋 = X𝑘𝐴 (𝐹𝑘)
64, 5eleq2s 2748 . . . . . . . 8 (𝑤𝑋 → ∀𝑘𝐴 (𝑤𝑘) ∈ (𝐹𝑘))
76adantl 481 . . . . . . 7 ((((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝐼𝐴𝑈 ∈ (𝐹𝐼))) ∧ 𝑤𝑋) → ∀𝑘𝐴 (𝑤𝑘) ∈ (𝐹𝑘))
8 fveq2 6229 . . . . . . . . 9 (𝑘 = 𝐼 → (𝑤𝑘) = (𝑤𝐼))
9 fveq2 6229 . . . . . . . . . 10 (𝑘 = 𝐼 → (𝐹𝑘) = (𝐹𝐼))
109unieqd 4478 . . . . . . . . 9 (𝑘 = 𝐼 (𝐹𝑘) = (𝐹𝐼))
118, 10eleq12d 2724 . . . . . . . 8 (𝑘 = 𝐼 → ((𝑤𝑘) ∈ (𝐹𝑘) ↔ (𝑤𝐼) ∈ (𝐹𝐼)))
1211rspcv 3336 . . . . . . 7 (𝐼𝐴 → (∀𝑘𝐴 (𝑤𝑘) ∈ (𝐹𝑘) → (𝑤𝐼) ∈ (𝐹𝐼)))
131, 7, 12sylc 65 . . . . . 6 ((((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝐼𝐴𝑈 ∈ (𝐹𝐼))) ∧ 𝑤𝑋) → (𝑤𝐼) ∈ (𝐹𝐼))
14 eqid 2651 . . . . . 6 (𝑤𝑋 ↦ (𝑤𝐼)) = (𝑤𝑋 ↦ (𝑤𝐼))
1513, 14fmptd 6425 . . . . 5 (((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝐼𝐴𝑈 ∈ (𝐹𝐼))) → (𝑤𝑋 ↦ (𝑤𝐼)):𝑋 (𝐹𝐼))
16 ffn 6083 . . . . 5 ((𝑤𝑋 ↦ (𝑤𝐼)):𝑋 (𝐹𝐼) → (𝑤𝑋 ↦ (𝑤𝐼)) Fn 𝑋)
17 elpreima 6377 . . . . 5 ((𝑤𝑋 ↦ (𝑤𝐼)) Fn 𝑋 → (𝑧 ∈ ((𝑤𝑋 ↦ (𝑤𝐼)) “ 𝑈) ↔ (𝑧𝑋 ∧ ((𝑤𝑋 ↦ (𝑤𝐼))‘𝑧) ∈ 𝑈)))
1815, 16, 173syl 18 . . . 4 (((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝐼𝐴𝑈 ∈ (𝐹𝐼))) → (𝑧 ∈ ((𝑤𝑋 ↦ (𝑤𝐼)) “ 𝑈) ↔ (𝑧𝑋 ∧ ((𝑤𝑋 ↦ (𝑤𝐼))‘𝑧) ∈ 𝑈)))
19 fveq1 6228 . . . . . . . . 9 (𝑤 = 𝑧 → (𝑤𝐼) = (𝑧𝐼))
20 fvex 6239 . . . . . . . . 9 (𝑧𝐼) ∈ V
2119, 14, 20fvmpt 6321 . . . . . . . 8 (𝑧𝑋 → ((𝑤𝑋 ↦ (𝑤𝐼))‘𝑧) = (𝑧𝐼))
2221eleq1d 2715 . . . . . . 7 (𝑧𝑋 → (((𝑤𝑋 ↦ (𝑤𝐼))‘𝑧) ∈ 𝑈 ↔ (𝑧𝐼) ∈ 𝑈))
2322pm5.32i 670 . . . . . 6 ((𝑧𝑋 ∧ ((𝑤𝑋 ↦ (𝑤𝐼))‘𝑧) ∈ 𝑈) ↔ (𝑧𝑋 ∧ (𝑧𝐼) ∈ 𝑈))
245eleq2i 2722 . . . . . . . . 9 (𝑧𝑋𝑧X𝑘𝐴 (𝐹𝑘))
25 vex 3234 . . . . . . . . . 10 𝑧 ∈ V
2625elixp 7957 . . . . . . . . 9 (𝑧X𝑘𝐴 (𝐹𝑘) ↔ (𝑧 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑧𝑘) ∈ (𝐹𝑘)))
2724, 26bitri 264 . . . . . . . 8 (𝑧𝑋 ↔ (𝑧 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑧𝑘) ∈ (𝐹𝑘)))
2827anbi1i 731 . . . . . . 7 ((𝑧𝑋 ∧ (𝑧𝐼) ∈ 𝑈) ↔ ((𝑧 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑧𝑘) ∈ (𝐹𝑘)) ∧ (𝑧𝐼) ∈ 𝑈))
29 anass 682 . . . . . . 7 (((𝑧 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑧𝑘) ∈ (𝐹𝑘)) ∧ (𝑧𝐼) ∈ 𝑈) ↔ (𝑧 Fn 𝐴 ∧ (∀𝑘𝐴 (𝑧𝑘) ∈ (𝐹𝑘) ∧ (𝑧𝐼) ∈ 𝑈)))
3028, 29bitri 264 . . . . . 6 ((𝑧𝑋 ∧ (𝑧𝐼) ∈ 𝑈) ↔ (𝑧 Fn 𝐴 ∧ (∀𝑘𝐴 (𝑧𝑘) ∈ (𝐹𝑘) ∧ (𝑧𝐼) ∈ 𝑈)))
3123, 30bitri 264 . . . . 5 ((𝑧𝑋 ∧ ((𝑤𝑋 ↦ (𝑤𝐼))‘𝑧) ∈ 𝑈) ↔ (𝑧 Fn 𝐴 ∧ (∀𝑘𝐴 (𝑧𝑘) ∈ (𝐹𝑘) ∧ (𝑧𝐼) ∈ 𝑈)))
32 simprl 809 . . . . . . . . . . . . 13 ((((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝐼𝐴𝑈 ∈ (𝐹𝐼))) ∧ ((𝑧𝐼) ∈ 𝑈 ∧ (𝑧𝑘) ∈ (𝐹𝑘))) → (𝑧𝐼) ∈ 𝑈)
33 fveq2 6229 . . . . . . . . . . . . . 14 (𝑘 = 𝐼 → (𝑧𝑘) = (𝑧𝐼))
34 iftrue 4125 . . . . . . . . . . . . . 14 (𝑘 = 𝐼 → if(𝑘 = 𝐼, 𝑈, (𝐹𝑘)) = 𝑈)
3533, 34eleq12d 2724 . . . . . . . . . . . . 13 (𝑘 = 𝐼 → ((𝑧𝑘) ∈ if(𝑘 = 𝐼, 𝑈, (𝐹𝑘)) ↔ (𝑧𝐼) ∈ 𝑈))
3632, 35syl5ibrcom 237 . . . . . . . . . . . 12 ((((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝐼𝐴𝑈 ∈ (𝐹𝐼))) ∧ ((𝑧𝐼) ∈ 𝑈 ∧ (𝑧𝑘) ∈ (𝐹𝑘))) → (𝑘 = 𝐼 → (𝑧𝑘) ∈ if(𝑘 = 𝐼, 𝑈, (𝐹𝑘))))
37 simprr 811 . . . . . . . . . . . . 13 ((((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝐼𝐴𝑈 ∈ (𝐹𝐼))) ∧ ((𝑧𝐼) ∈ 𝑈 ∧ (𝑧𝑘) ∈ (𝐹𝑘))) → (𝑧𝑘) ∈ (𝐹𝑘))
38 iffalse 4128 . . . . . . . . . . . . . 14 𝑘 = 𝐼 → if(𝑘 = 𝐼, 𝑈, (𝐹𝑘)) = (𝐹𝑘))
3938eleq2d 2716 . . . . . . . . . . . . 13 𝑘 = 𝐼 → ((𝑧𝑘) ∈ if(𝑘 = 𝐼, 𝑈, (𝐹𝑘)) ↔ (𝑧𝑘) ∈ (𝐹𝑘)))
4037, 39syl5ibrcom 237 . . . . . . . . . . . 12 ((((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝐼𝐴𝑈 ∈ (𝐹𝐼))) ∧ ((𝑧𝐼) ∈ 𝑈 ∧ (𝑧𝑘) ∈ (𝐹𝑘))) → (¬ 𝑘 = 𝐼 → (𝑧𝑘) ∈ if(𝑘 = 𝐼, 𝑈, (𝐹𝑘))))
4136, 40pm2.61d 170 . . . . . . . . . . 11 ((((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝐼𝐴𝑈 ∈ (𝐹𝐼))) ∧ ((𝑧𝐼) ∈ 𝑈 ∧ (𝑧𝑘) ∈ (𝐹𝑘))) → (𝑧𝑘) ∈ if(𝑘 = 𝐼, 𝑈, (𝐹𝑘)))
4241expr 642 . . . . . . . . . 10 ((((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝐼𝐴𝑈 ∈ (𝐹𝐼))) ∧ (𝑧𝐼) ∈ 𝑈) → ((𝑧𝑘) ∈ (𝐹𝑘) → (𝑧𝑘) ∈ if(𝑘 = 𝐼, 𝑈, (𝐹𝑘))))
4342ralimdv 2992 . . . . . . . . 9 ((((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝐼𝐴𝑈 ∈ (𝐹𝐼))) ∧ (𝑧𝐼) ∈ 𝑈) → (∀𝑘𝐴 (𝑧𝑘) ∈ (𝐹𝑘) → ∀𝑘𝐴 (𝑧𝑘) ∈ if(𝑘 = 𝐼, 𝑈, (𝐹𝑘))))
4443expimpd 628 . . . . . . . 8 (((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝐼𝐴𝑈 ∈ (𝐹𝐼))) → (((𝑧𝐼) ∈ 𝑈 ∧ ∀𝑘𝐴 (𝑧𝑘) ∈ (𝐹𝑘)) → ∀𝑘𝐴 (𝑧𝑘) ∈ if(𝑘 = 𝐼, 𝑈, (𝐹𝑘))))
4544ancomsd 469 . . . . . . 7 (((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝐼𝐴𝑈 ∈ (𝐹𝐼))) → ((∀𝑘𝐴 (𝑧𝑘) ∈ (𝐹𝑘) ∧ (𝑧𝐼) ∈ 𝑈) → ∀𝑘𝐴 (𝑧𝑘) ∈ if(𝑘 = 𝐼, 𝑈, (𝐹𝑘))))
46 elssuni 4499 . . . . . . . . . . . . 13 (𝑈 ∈ (𝐹𝐼) → 𝑈 (𝐹𝐼))
4746ad2antll 765 . . . . . . . . . . . 12 (((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝐼𝐴𝑈 ∈ (𝐹𝐼))) → 𝑈 (𝐹𝐼))
4834, 10sseq12d 3667 . . . . . . . . . . . 12 (𝑘 = 𝐼 → (if(𝑘 = 𝐼, 𝑈, (𝐹𝑘)) ⊆ (𝐹𝑘) ↔ 𝑈 (𝐹𝐼)))
4947, 48syl5ibrcom 237 . . . . . . . . . . 11 (((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝐼𝐴𝑈 ∈ (𝐹𝐼))) → (𝑘 = 𝐼 → if(𝑘 = 𝐼, 𝑈, (𝐹𝑘)) ⊆ (𝐹𝑘)))
50 ssid 3657 . . . . . . . . . . . 12 (𝐹𝑘) ⊆ (𝐹𝑘)
5138, 50syl6eqss 3688 . . . . . . . . . . 11 𝑘 = 𝐼 → if(𝑘 = 𝐼, 𝑈, (𝐹𝑘)) ⊆ (𝐹𝑘))
5249, 51pm2.61d1 171 . . . . . . . . . 10 (((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝐼𝐴𝑈 ∈ (𝐹𝐼))) → if(𝑘 = 𝐼, 𝑈, (𝐹𝑘)) ⊆ (𝐹𝑘))
5352sseld 3635 . . . . . . . . 9 (((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝐼𝐴𝑈 ∈ (𝐹𝐼))) → ((𝑧𝑘) ∈ if(𝑘 = 𝐼, 𝑈, (𝐹𝑘)) → (𝑧𝑘) ∈ (𝐹𝑘)))
5453ralimdv 2992 . . . . . . . 8 (((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝐼𝐴𝑈 ∈ (𝐹𝐼))) → (∀𝑘𝐴 (𝑧𝑘) ∈ if(𝑘 = 𝐼, 𝑈, (𝐹𝑘)) → ∀𝑘𝐴 (𝑧𝑘) ∈ (𝐹𝑘)))
5535rspcv 3336 . . . . . . . . 9 (𝐼𝐴 → (∀𝑘𝐴 (𝑧𝑘) ∈ if(𝑘 = 𝐼, 𝑈, (𝐹𝑘)) → (𝑧𝐼) ∈ 𝑈))
5655ad2antrl 764 . . . . . . . 8 (((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝐼𝐴𝑈 ∈ (𝐹𝐼))) → (∀𝑘𝐴 (𝑧𝑘) ∈ if(𝑘 = 𝐼, 𝑈, (𝐹𝑘)) → (𝑧𝐼) ∈ 𝑈))
5754, 56jcad 554 . . . . . . 7 (((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝐼𝐴𝑈 ∈ (𝐹𝐼))) → (∀𝑘𝐴 (𝑧𝑘) ∈ if(𝑘 = 𝐼, 𝑈, (𝐹𝑘)) → (∀𝑘𝐴 (𝑧𝑘) ∈ (𝐹𝑘) ∧ (𝑧𝐼) ∈ 𝑈)))
5845, 57impbid 202 . . . . . 6 (((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝐼𝐴𝑈 ∈ (𝐹𝐼))) → ((∀𝑘𝐴 (𝑧𝑘) ∈ (𝐹𝑘) ∧ (𝑧𝐼) ∈ 𝑈) ↔ ∀𝑘𝐴 (𝑧𝑘) ∈ if(𝑘 = 𝐼, 𝑈, (𝐹𝑘))))
5958anbi2d 740 . . . . 5 (((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝐼𝐴𝑈 ∈ (𝐹𝐼))) → ((𝑧 Fn 𝐴 ∧ (∀𝑘𝐴 (𝑧𝑘) ∈ (𝐹𝑘) ∧ (𝑧𝐼) ∈ 𝑈)) ↔ (𝑧 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑧𝑘) ∈ if(𝑘 = 𝐼, 𝑈, (𝐹𝑘)))))
6031, 59syl5bb 272 . . . 4 (((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝐼𝐴𝑈 ∈ (𝐹𝐼))) → ((𝑧𝑋 ∧ ((𝑤𝑋 ↦ (𝑤𝐼))‘𝑧) ∈ 𝑈) ↔ (𝑧 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑧𝑘) ∈ if(𝑘 = 𝐼, 𝑈, (𝐹𝑘)))))
6118, 60bitrd 268 . . 3 (((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝐼𝐴𝑈 ∈ (𝐹𝐼))) → (𝑧 ∈ ((𝑤𝑋 ↦ (𝑤𝐼)) “ 𝑈) ↔ (𝑧 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑧𝑘) ∈ if(𝑘 = 𝐼, 𝑈, (𝐹𝑘)))))
6225elixp 7957 . . 3 (𝑧X𝑘𝐴 if(𝑘 = 𝐼, 𝑈, (𝐹𝑘)) ↔ (𝑧 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑧𝑘) ∈ if(𝑘 = 𝐼, 𝑈, (𝐹𝑘))))
6361, 62syl6bbr 278 . 2 (((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝐼𝐴𝑈 ∈ (𝐹𝐼))) → (𝑧 ∈ ((𝑤𝑋 ↦ (𝑤𝐼)) “ 𝑈) ↔ 𝑧X𝑘𝐴 if(𝑘 = 𝐼, 𝑈, (𝐹𝑘))))
6463eqrdv 2649 1 (((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝐼𝐴𝑈 ∈ (𝐹𝐼))) → ((𝑤𝑋 ↦ (𝑤𝐼)) “ 𝑈) = X𝑘𝐴 if(𝑘 = 𝐼, 𝑈, (𝐹𝑘)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 383   = wceq 1523  wcel 2030  wral 2941  wss 3607  ifcif 4119   cuni 4468  cmpt 4762  ccnv 5142  cima 5146   Fn wfn 5921  wf 5922  cfv 5926  Xcixp 7950  Topctop 20746
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pr 4936
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-rab 2950  df-v 3233  df-sbc 3469  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-br 4686  df-opab 4746  df-mpt 4763  df-id 5053  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-fv 5934  df-ixp 7951
This theorem is referenced by:  ptpjpre2  21431  ptbasfi  21432
  Copyright terms: Public domain W3C validator