MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ptopn2 Structured version   Visualization version   GIF version

Theorem ptopn2 21435
Description: A sub-basic open set in the product topology. (Contributed by Stefan O'Rear, 22-Feb-2015.)
Hypotheses
Ref Expression
ptopn2.a (𝜑𝐴𝑉)
ptopn2.f (𝜑𝐹:𝐴⟶Top)
ptopn2.o (𝜑𝑂 ∈ (𝐹𝑌))
Assertion
Ref Expression
ptopn2 (𝜑X𝑘𝐴 if(𝑘 = 𝑌, 𝑂, (𝐹𝑘)) ∈ (∏t𝐹))
Distinct variable groups:   𝜑,𝑘   𝐴,𝑘   𝑘,𝐹   𝑘,𝑉   𝑘,𝑌
Allowed substitution hint:   𝑂(𝑘)

Proof of Theorem ptopn2
StepHypRef Expression
1 ptopn2.a . 2 (𝜑𝐴𝑉)
2 ptopn2.f . 2 (𝜑𝐹:𝐴⟶Top)
3 snfi 8079 . . 3 {𝑌} ∈ Fin
43a1i 11 . 2 (𝜑 → {𝑌} ∈ Fin)
5 ptopn2.o . . . . . 6 (𝜑𝑂 ∈ (𝐹𝑌))
65adantr 480 . . . . 5 ((𝜑𝑘𝐴) → 𝑂 ∈ (𝐹𝑌))
7 fveq2 6229 . . . . . 6 (𝑘 = 𝑌 → (𝐹𝑘) = (𝐹𝑌))
87eleq2d 2716 . . . . 5 (𝑘 = 𝑌 → (𝑂 ∈ (𝐹𝑘) ↔ 𝑂 ∈ (𝐹𝑌)))
96, 8syl5ibrcom 237 . . . 4 ((𝜑𝑘𝐴) → (𝑘 = 𝑌𝑂 ∈ (𝐹𝑘)))
109imp 444 . . 3 (((𝜑𝑘𝐴) ∧ 𝑘 = 𝑌) → 𝑂 ∈ (𝐹𝑘))
112ffvelrnda 6399 . . . . 5 ((𝜑𝑘𝐴) → (𝐹𝑘) ∈ Top)
12 eqid 2651 . . . . . 6 (𝐹𝑘) = (𝐹𝑘)
1312topopn 20759 . . . . 5 ((𝐹𝑘) ∈ Top → (𝐹𝑘) ∈ (𝐹𝑘))
1411, 13syl 17 . . . 4 ((𝜑𝑘𝐴) → (𝐹𝑘) ∈ (𝐹𝑘))
1514adantr 480 . . 3 (((𝜑𝑘𝐴) ∧ ¬ 𝑘 = 𝑌) → (𝐹𝑘) ∈ (𝐹𝑘))
1610, 15ifclda 4153 . 2 ((𝜑𝑘𝐴) → if(𝑘 = 𝑌, 𝑂, (𝐹𝑘)) ∈ (𝐹𝑘))
17 eldifn 3766 . . . . 5 (𝑘 ∈ (𝐴 ∖ {𝑌}) → ¬ 𝑘 ∈ {𝑌})
18 velsn 4226 . . . . 5 (𝑘 ∈ {𝑌} ↔ 𝑘 = 𝑌)
1917, 18sylnib 317 . . . 4 (𝑘 ∈ (𝐴 ∖ {𝑌}) → ¬ 𝑘 = 𝑌)
2019iffalsed 4130 . . 3 (𝑘 ∈ (𝐴 ∖ {𝑌}) → if(𝑘 = 𝑌, 𝑂, (𝐹𝑘)) = (𝐹𝑘))
2120adantl 481 . 2 ((𝜑𝑘 ∈ (𝐴 ∖ {𝑌})) → if(𝑘 = 𝑌, 𝑂, (𝐹𝑘)) = (𝐹𝑘))
221, 2, 4, 16, 21ptopn 21434 1 (𝜑X𝑘𝐴 if(𝑘 = 𝑌, 𝑂, (𝐹𝑘)) ∈ (∏t𝐹))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 383   = wceq 1523  wcel 2030  cdif 3604  ifcif 4119  {csn 4210   cuni 4468  wf 5922  cfv 5926  Xcixp 7950  Fincfn 7997  tcpt 16146  Topctop 20746
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-oadd 7609  df-er 7787  df-ixp 7951  df-en 7998  df-fin 8001  df-fi 8358  df-topgen 16151  df-pt 16152  df-top 20747  df-bases 20798
This theorem is referenced by:  ptcld  21464
  Copyright terms: Public domain W3C validator