MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ptcmplem3 Structured version   Visualization version   GIF version

Theorem ptcmplem3 22079
Description: Lemma for ptcmp 22083. (Contributed by Mario Carneiro, 26-Aug-2015.)
Hypotheses
Ref Expression
ptcmp.1 𝑆 = (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))
ptcmp.2 𝑋 = X𝑛𝐴 (𝐹𝑛)
ptcmp.3 (𝜑𝐴𝑉)
ptcmp.4 (𝜑𝐹:𝐴⟶Comp)
ptcmp.5 (𝜑𝑋 ∈ (UFL ∩ dom card))
ptcmplem2.5 (𝜑𝑈 ⊆ ran 𝑆)
ptcmplem2.6 (𝜑𝑋 = 𝑈)
ptcmplem2.7 (𝜑 → ¬ ∃𝑧 ∈ (𝒫 𝑈 ∩ Fin)𝑋 = 𝑧)
ptcmplem3.8 𝐾 = {𝑢 ∈ (𝐹𝑘) ∣ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢) ∈ 𝑈}
Assertion
Ref Expression
ptcmplem3 (𝜑 → ∃𝑓(𝑓 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑓𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾)))
Distinct variable groups:   𝑓,𝑘,𝑛,𝑢,𝑤,𝑧,𝐴   𝑓,𝐾,𝑢   𝑆,𝑘,𝑛,𝑢,𝑧   𝜑,𝑓,𝑘,𝑛,𝑢   𝑈,𝑘,𝑢,𝑧   𝑘,𝑉,𝑛,𝑢,𝑤,𝑧   𝑓,𝐹,𝑘,𝑛,𝑢,𝑤,𝑧   𝑓,𝑋,𝑘,𝑛,𝑢,𝑤,𝑧
Allowed substitution hints:   𝜑(𝑧,𝑤)   𝑆(𝑤,𝑓)   𝑈(𝑤,𝑓,𝑛)   𝐾(𝑧,𝑤,𝑘,𝑛)   𝑉(𝑓)

Proof of Theorem ptcmplem3
Dummy variables 𝑔 𝑚 𝑡 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ptcmp.3 . . . 4 (𝜑𝐴𝑉)
2 rabexg 4963 . . . 4 (𝐴𝑉 → {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1𝑜} ∈ V)
31, 2syl 17 . . 3 (𝜑 → {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1𝑜} ∈ V)
4 ptcmp.1 . . . . 5 𝑆 = (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢))
5 ptcmp.2 . . . . 5 𝑋 = X𝑛𝐴 (𝐹𝑛)
6 ptcmp.4 . . . . 5 (𝜑𝐹:𝐴⟶Comp)
7 ptcmp.5 . . . . 5 (𝜑𝑋 ∈ (UFL ∩ dom card))
8 ptcmplem2.5 . . . . 5 (𝜑𝑈 ⊆ ran 𝑆)
9 ptcmplem2.6 . . . . 5 (𝜑𝑋 = 𝑈)
10 ptcmplem2.7 . . . . 5 (𝜑 → ¬ ∃𝑧 ∈ (𝒫 𝑈 ∩ Fin)𝑋 = 𝑧)
114, 5, 1, 6, 7, 8, 9, 10ptcmplem2 22078 . . . 4 (𝜑 𝑘 ∈ {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1𝑜} (𝐹𝑘) ∈ dom card)
12 eldifi 3875 . . . . . . . 8 (𝑦 ∈ ( (𝐹𝑘) ∖ 𝐾) → 𝑦 (𝐹𝑘))
13123ad2ant3 1130 . . . . . . 7 ((𝜑𝑦 ∈ V ∧ 𝑦 ∈ ( (𝐹𝑘) ∖ 𝐾)) → 𝑦 (𝐹𝑘))
1413rabssdv 3823 . . . . . 6 (𝜑 → {𝑦 ∈ V ∣ 𝑦 ∈ ( (𝐹𝑘) ∖ 𝐾)} ⊆ (𝐹𝑘))
1514ralrimivw 3105 . . . . 5 (𝜑 → ∀𝑘 ∈ {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1𝑜} {𝑦 ∈ V ∣ 𝑦 ∈ ( (𝐹𝑘) ∖ 𝐾)} ⊆ (𝐹𝑘))
16 ss2iun 4688 . . . . 5 (∀𝑘 ∈ {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1𝑜} {𝑦 ∈ V ∣ 𝑦 ∈ ( (𝐹𝑘) ∖ 𝐾)} ⊆ (𝐹𝑘) → 𝑘 ∈ {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1𝑜} {𝑦 ∈ V ∣ 𝑦 ∈ ( (𝐹𝑘) ∖ 𝐾)} ⊆ 𝑘 ∈ {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1𝑜} (𝐹𝑘))
1715, 16syl 17 . . . 4 (𝜑 𝑘 ∈ {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1𝑜} {𝑦 ∈ V ∣ 𝑦 ∈ ( (𝐹𝑘) ∖ 𝐾)} ⊆ 𝑘 ∈ {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1𝑜} (𝐹𝑘))
18 ssnum 9072 . . . 4 (( 𝑘 ∈ {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1𝑜} (𝐹𝑘) ∈ dom card ∧ 𝑘 ∈ {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1𝑜} {𝑦 ∈ V ∣ 𝑦 ∈ ( (𝐹𝑘) ∖ 𝐾)} ⊆ 𝑘 ∈ {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1𝑜} (𝐹𝑘)) → 𝑘 ∈ {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1𝑜} {𝑦 ∈ V ∣ 𝑦 ∈ ( (𝐹𝑘) ∖ 𝐾)} ∈ dom card)
1911, 17, 18syl2anc 696 . . 3 (𝜑 𝑘 ∈ {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1𝑜} {𝑦 ∈ V ∣ 𝑦 ∈ ( (𝐹𝑘) ∖ 𝐾)} ∈ dom card)
20 elrabi 3499 . . . . 5 (𝑘 ∈ {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1𝑜} → 𝑘𝐴)
2110adantr 472 . . . . . . . 8 ((𝜑𝑘𝐴) → ¬ ∃𝑧 ∈ (𝒫 𝑈 ∩ Fin)𝑋 = 𝑧)
22 ssdif0 4085 . . . . . . . . 9 ( (𝐹𝑘) ⊆ 𝐾 ↔ ( (𝐹𝑘) ∖ 𝐾) = ∅)
236ffvelrnda 6523 . . . . . . . . . . . . 13 ((𝜑𝑘𝐴) → (𝐹𝑘) ∈ Comp)
2423adantr 472 . . . . . . . . . . . 12 (((𝜑𝑘𝐴) ∧ (𝐹𝑘) ⊆ 𝐾) → (𝐹𝑘) ∈ Comp)
25 ptcmplem3.8 . . . . . . . . . . . . . 14 𝐾 = {𝑢 ∈ (𝐹𝑘) ∣ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢) ∈ 𝑈}
26 ssrab2 3828 . . . . . . . . . . . . . 14 {𝑢 ∈ (𝐹𝑘) ∣ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢) ∈ 𝑈} ⊆ (𝐹𝑘)
2725, 26eqsstri 3776 . . . . . . . . . . . . 13 𝐾 ⊆ (𝐹𝑘)
2827a1i 11 . . . . . . . . . . . 12 (((𝜑𝑘𝐴) ∧ (𝐹𝑘) ⊆ 𝐾) → 𝐾 ⊆ (𝐹𝑘))
29 simpr 479 . . . . . . . . . . . . 13 (((𝜑𝑘𝐴) ∧ (𝐹𝑘) ⊆ 𝐾) → (𝐹𝑘) ⊆ 𝐾)
30 uniss 4610 . . . . . . . . . . . . . 14 (𝐾 ⊆ (𝐹𝑘) → 𝐾 (𝐹𝑘))
3127, 30mp1i 13 . . . . . . . . . . . . 13 (((𝜑𝑘𝐴) ∧ (𝐹𝑘) ⊆ 𝐾) → 𝐾 (𝐹𝑘))
3229, 31eqssd 3761 . . . . . . . . . . . 12 (((𝜑𝑘𝐴) ∧ (𝐹𝑘) ⊆ 𝐾) → (𝐹𝑘) = 𝐾)
33 eqid 2760 . . . . . . . . . . . . 13 (𝐹𝑘) = (𝐹𝑘)
3433cmpcov 21414 . . . . . . . . . . . 12 (((𝐹𝑘) ∈ Comp ∧ 𝐾 ⊆ (𝐹𝑘) ∧ (𝐹𝑘) = 𝐾) → ∃𝑡 ∈ (𝒫 𝐾 ∩ Fin) (𝐹𝑘) = 𝑡)
3524, 28, 32, 34syl3anc 1477 . . . . . . . . . . 11 (((𝜑𝑘𝐴) ∧ (𝐹𝑘) ⊆ 𝐾) → ∃𝑡 ∈ (𝒫 𝐾 ∩ Fin) (𝐹𝑘) = 𝑡)
36 elfpw 8435 . . . . . . . . . . . . . . . . . . 19 (𝑡 ∈ (𝒫 𝐾 ∩ Fin) ↔ (𝑡𝐾𝑡 ∈ Fin))
3736simplbi 478 . . . . . . . . . . . . . . . . . 18 (𝑡 ∈ (𝒫 𝐾 ∩ Fin) → 𝑡𝐾)
3837ad2antrl 766 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑘𝐴) ∧ (𝐹𝑘) ⊆ 𝐾) ∧ (𝑡 ∈ (𝒫 𝐾 ∩ Fin) ∧ (𝐹𝑘) = 𝑡)) → 𝑡𝐾)
3938sselda 3744 . . . . . . . . . . . . . . . 16 (((((𝜑𝑘𝐴) ∧ (𝐹𝑘) ⊆ 𝐾) ∧ (𝑡 ∈ (𝒫 𝐾 ∩ Fin) ∧ (𝐹𝑘) = 𝑡)) ∧ 𝑥𝑡) → 𝑥𝐾)
40 imaeq2 5620 . . . . . . . . . . . . . . . . . . 19 (𝑢 = 𝑥 → ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢) = ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑥))
4140eleq1d 2824 . . . . . . . . . . . . . . . . . 18 (𝑢 = 𝑥 → (((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑢) ∈ 𝑈 ↔ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑥) ∈ 𝑈))
4241, 25elrab2 3507 . . . . . . . . . . . . . . . . 17 (𝑥𝐾 ↔ (𝑥 ∈ (𝐹𝑘) ∧ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑥) ∈ 𝑈))
4342simprbi 483 . . . . . . . . . . . . . . . 16 (𝑥𝐾 → ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑥) ∈ 𝑈)
4439, 43syl 17 . . . . . . . . . . . . . . 15 (((((𝜑𝑘𝐴) ∧ (𝐹𝑘) ⊆ 𝐾) ∧ (𝑡 ∈ (𝒫 𝐾 ∩ Fin) ∧ (𝐹𝑘) = 𝑡)) ∧ 𝑥𝑡) → ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑥) ∈ 𝑈)
45 eqid 2760 . . . . . . . . . . . . . . 15 (𝑥𝑡 ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑥)) = (𝑥𝑡 ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑥))
4644, 45fmptd 6549 . . . . . . . . . . . . . 14 ((((𝜑𝑘𝐴) ∧ (𝐹𝑘) ⊆ 𝐾) ∧ (𝑡 ∈ (𝒫 𝐾 ∩ Fin) ∧ (𝐹𝑘) = 𝑡)) → (𝑥𝑡 ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑥)):𝑡𝑈)
47 frn 6214 . . . . . . . . . . . . . 14 ((𝑥𝑡 ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑥)):𝑡𝑈 → ran (𝑥𝑡 ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑥)) ⊆ 𝑈)
4846, 47syl 17 . . . . . . . . . . . . 13 ((((𝜑𝑘𝐴) ∧ (𝐹𝑘) ⊆ 𝐾) ∧ (𝑡 ∈ (𝒫 𝐾 ∩ Fin) ∧ (𝐹𝑘) = 𝑡)) → ran (𝑥𝑡 ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑥)) ⊆ 𝑈)
4936simprbi 483 . . . . . . . . . . . . . . 15 (𝑡 ∈ (𝒫 𝐾 ∩ Fin) → 𝑡 ∈ Fin)
5049ad2antrl 766 . . . . . . . . . . . . . 14 ((((𝜑𝑘𝐴) ∧ (𝐹𝑘) ⊆ 𝐾) ∧ (𝑡 ∈ (𝒫 𝐾 ∩ Fin) ∧ (𝐹𝑘) = 𝑡)) → 𝑡 ∈ Fin)
5145rnmpt 5526 . . . . . . . . . . . . . . 15 ran (𝑥𝑡 ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑥)) = {𝑓 ∣ ∃𝑥𝑡 𝑓 = ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑥)}
52 abrexfi 8433 . . . . . . . . . . . . . . 15 (𝑡 ∈ Fin → {𝑓 ∣ ∃𝑥𝑡 𝑓 = ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑥)} ∈ Fin)
5351, 52syl5eqel 2843 . . . . . . . . . . . . . 14 (𝑡 ∈ Fin → ran (𝑥𝑡 ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑥)) ∈ Fin)
5450, 53syl 17 . . . . . . . . . . . . 13 ((((𝜑𝑘𝐴) ∧ (𝐹𝑘) ⊆ 𝐾) ∧ (𝑡 ∈ (𝒫 𝐾 ∩ Fin) ∧ (𝐹𝑘) = 𝑡)) → ran (𝑥𝑡 ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑥)) ∈ Fin)
55 elfpw 8435 . . . . . . . . . . . . 13 (ran (𝑥𝑡 ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑥)) ∈ (𝒫 𝑈 ∩ Fin) ↔ (ran (𝑥𝑡 ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑥)) ⊆ 𝑈 ∧ ran (𝑥𝑡 ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑥)) ∈ Fin))
5648, 54, 55sylanbrc 701 . . . . . . . . . . . 12 ((((𝜑𝑘𝐴) ∧ (𝐹𝑘) ⊆ 𝐾) ∧ (𝑡 ∈ (𝒫 𝐾 ∩ Fin) ∧ (𝐹𝑘) = 𝑡)) → ran (𝑥𝑡 ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑥)) ∈ (𝒫 𝑈 ∩ Fin))
57 fveq2 6353 . . . . . . . . . . . . . . . . . . . . . 22 (𝑛 = 𝑘 → (𝑓𝑛) = (𝑓𝑘))
58 fveq2 6353 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑛 = 𝑘 → (𝐹𝑛) = (𝐹𝑘))
5958unieqd 4598 . . . . . . . . . . . . . . . . . . . . . 22 (𝑛 = 𝑘 (𝐹𝑛) = (𝐹𝑘))
6057, 59eleq12d 2833 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 = 𝑘 → ((𝑓𝑛) ∈ (𝐹𝑛) ↔ (𝑓𝑘) ∈ (𝐹𝑘)))
61 simpr 479 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑𝑘𝐴) ∧ (𝐹𝑘) ⊆ 𝐾) ∧ (𝑡 ∈ (𝒫 𝐾 ∩ Fin) ∧ (𝐹𝑘) = 𝑡)) ∧ 𝑓𝑋) → 𝑓𝑋)
6261, 5syl6eleq 2849 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑𝑘𝐴) ∧ (𝐹𝑘) ⊆ 𝐾) ∧ (𝑡 ∈ (𝒫 𝐾 ∩ Fin) ∧ (𝐹𝑘) = 𝑡)) ∧ 𝑓𝑋) → 𝑓X𝑛𝐴 (𝐹𝑛))
63 vex 3343 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑓 ∈ V
6463elixp 8083 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑓X𝑛𝐴 (𝐹𝑛) ↔ (𝑓 Fn 𝐴 ∧ ∀𝑛𝐴 (𝑓𝑛) ∈ (𝐹𝑛)))
6564simprbi 483 . . . . . . . . . . . . . . . . . . . . . 22 (𝑓X𝑛𝐴 (𝐹𝑛) → ∀𝑛𝐴 (𝑓𝑛) ∈ (𝐹𝑛))
6662, 65syl 17 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑘𝐴) ∧ (𝐹𝑘) ⊆ 𝐾) ∧ (𝑡 ∈ (𝒫 𝐾 ∩ Fin) ∧ (𝐹𝑘) = 𝑡)) ∧ 𝑓𝑋) → ∀𝑛𝐴 (𝑓𝑛) ∈ (𝐹𝑛))
67 simp-4r 827 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑘𝐴) ∧ (𝐹𝑘) ⊆ 𝐾) ∧ (𝑡 ∈ (𝒫 𝐾 ∩ Fin) ∧ (𝐹𝑘) = 𝑡)) ∧ 𝑓𝑋) → 𝑘𝐴)
6860, 66, 67rspcdva 3455 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑘𝐴) ∧ (𝐹𝑘) ⊆ 𝐾) ∧ (𝑡 ∈ (𝒫 𝐾 ∩ Fin) ∧ (𝐹𝑘) = 𝑡)) ∧ 𝑓𝑋) → (𝑓𝑘) ∈ (𝐹𝑘))
69 simplrr 820 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑘𝐴) ∧ (𝐹𝑘) ⊆ 𝐾) ∧ (𝑡 ∈ (𝒫 𝐾 ∩ Fin) ∧ (𝐹𝑘) = 𝑡)) ∧ 𝑓𝑋) → (𝐹𝑘) = 𝑡)
7068, 69eleqtrd 2841 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑘𝐴) ∧ (𝐹𝑘) ⊆ 𝐾) ∧ (𝑡 ∈ (𝒫 𝐾 ∩ Fin) ∧ (𝐹𝑘) = 𝑡)) ∧ 𝑓𝑋) → (𝑓𝑘) ∈ 𝑡)
71 eluni2 4592 . . . . . . . . . . . . . . . . . . 19 ((𝑓𝑘) ∈ 𝑡 ↔ ∃𝑥𝑡 (𝑓𝑘) ∈ 𝑥)
7270, 71sylib 208 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑘𝐴) ∧ (𝐹𝑘) ⊆ 𝐾) ∧ (𝑡 ∈ (𝒫 𝐾 ∩ Fin) ∧ (𝐹𝑘) = 𝑡)) ∧ 𝑓𝑋) → ∃𝑥𝑡 (𝑓𝑘) ∈ 𝑥)
73 fveq1 6352 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑤 = 𝑓 → (𝑤𝑘) = (𝑓𝑘))
7473eleq1d 2824 . . . . . . . . . . . . . . . . . . . . . 22 (𝑤 = 𝑓 → ((𝑤𝑘) ∈ 𝑥 ↔ (𝑓𝑘) ∈ 𝑥))
75 eqid 2760 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑤𝑋 ↦ (𝑤𝑘)) = (𝑤𝑋 ↦ (𝑤𝑘))
7675mptpreima 5789 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑥) = {𝑤𝑋 ∣ (𝑤𝑘) ∈ 𝑥}
7774, 76elrab2 3507 . . . . . . . . . . . . . . . . . . . . 21 (𝑓 ∈ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑥) ↔ (𝑓𝑋 ∧ (𝑓𝑘) ∈ 𝑥))
7877baib 982 . . . . . . . . . . . . . . . . . . . 20 (𝑓𝑋 → (𝑓 ∈ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑥) ↔ (𝑓𝑘) ∈ 𝑥))
7978ad2antlr 765 . . . . . . . . . . . . . . . . . . 19 ((((((𝜑𝑘𝐴) ∧ (𝐹𝑘) ⊆ 𝐾) ∧ (𝑡 ∈ (𝒫 𝐾 ∩ Fin) ∧ (𝐹𝑘) = 𝑡)) ∧ 𝑓𝑋) ∧ 𝑥𝑡) → (𝑓 ∈ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑥) ↔ (𝑓𝑘) ∈ 𝑥))
8079rexbidva 3187 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑘𝐴) ∧ (𝐹𝑘) ⊆ 𝐾) ∧ (𝑡 ∈ (𝒫 𝐾 ∩ Fin) ∧ (𝐹𝑘) = 𝑡)) ∧ 𝑓𝑋) → (∃𝑥𝑡 𝑓 ∈ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑥) ↔ ∃𝑥𝑡 (𝑓𝑘) ∈ 𝑥))
8172, 80mpbird 247 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑘𝐴) ∧ (𝐹𝑘) ⊆ 𝐾) ∧ (𝑡 ∈ (𝒫 𝐾 ∩ Fin) ∧ (𝐹𝑘) = 𝑡)) ∧ 𝑓𝑋) → ∃𝑥𝑡 𝑓 ∈ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑥))
82 eliun 4676 . . . . . . . . . . . . . . . . 17 (𝑓 𝑥𝑡 ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑥) ↔ ∃𝑥𝑡 𝑓 ∈ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑥))
8381, 82sylibr 224 . . . . . . . . . . . . . . . 16 (((((𝜑𝑘𝐴) ∧ (𝐹𝑘) ⊆ 𝐾) ∧ (𝑡 ∈ (𝒫 𝐾 ∩ Fin) ∧ (𝐹𝑘) = 𝑡)) ∧ 𝑓𝑋) → 𝑓 𝑥𝑡 ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑥))
8483ex 449 . . . . . . . . . . . . . . 15 ((((𝜑𝑘𝐴) ∧ (𝐹𝑘) ⊆ 𝐾) ∧ (𝑡 ∈ (𝒫 𝐾 ∩ Fin) ∧ (𝐹𝑘) = 𝑡)) → (𝑓𝑋𝑓 𝑥𝑡 ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑥)))
8584ssrdv 3750 . . . . . . . . . . . . . 14 ((((𝜑𝑘𝐴) ∧ (𝐹𝑘) ⊆ 𝐾) ∧ (𝑡 ∈ (𝒫 𝐾 ∩ Fin) ∧ (𝐹𝑘) = 𝑡)) → 𝑋 𝑥𝑡 ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑥))
8644ralrimiva 3104 . . . . . . . . . . . . . . . 16 ((((𝜑𝑘𝐴) ∧ (𝐹𝑘) ⊆ 𝐾) ∧ (𝑡 ∈ (𝒫 𝐾 ∩ Fin) ∧ (𝐹𝑘) = 𝑡)) → ∀𝑥𝑡 ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑥) ∈ 𝑈)
87 dfiun2g 4704 . . . . . . . . . . . . . . . 16 (∀𝑥𝑡 ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑥) ∈ 𝑈 𝑥𝑡 ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑥) = {𝑓 ∣ ∃𝑥𝑡 𝑓 = ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑥)})
8886, 87syl 17 . . . . . . . . . . . . . . 15 ((((𝜑𝑘𝐴) ∧ (𝐹𝑘) ⊆ 𝐾) ∧ (𝑡 ∈ (𝒫 𝐾 ∩ Fin) ∧ (𝐹𝑘) = 𝑡)) → 𝑥𝑡 ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑥) = {𝑓 ∣ ∃𝑥𝑡 𝑓 = ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑥)})
8951unieqi 4597 . . . . . . . . . . . . . . 15 ran (𝑥𝑡 ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑥)) = {𝑓 ∣ ∃𝑥𝑡 𝑓 = ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑥)}
9088, 89syl6eqr 2812 . . . . . . . . . . . . . 14 ((((𝜑𝑘𝐴) ∧ (𝐹𝑘) ⊆ 𝐾) ∧ (𝑡 ∈ (𝒫 𝐾 ∩ Fin) ∧ (𝐹𝑘) = 𝑡)) → 𝑥𝑡 ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑥) = ran (𝑥𝑡 ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑥)))
9185, 90sseqtrd 3782 . . . . . . . . . . . . 13 ((((𝜑𝑘𝐴) ∧ (𝐹𝑘) ⊆ 𝐾) ∧ (𝑡 ∈ (𝒫 𝐾 ∩ Fin) ∧ (𝐹𝑘) = 𝑡)) → 𝑋 ran (𝑥𝑡 ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑥)))
9248unissd 4614 . . . . . . . . . . . . . 14 ((((𝜑𝑘𝐴) ∧ (𝐹𝑘) ⊆ 𝐾) ∧ (𝑡 ∈ (𝒫 𝐾 ∩ Fin) ∧ (𝐹𝑘) = 𝑡)) → ran (𝑥𝑡 ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑥)) ⊆ 𝑈)
939ad3antrrr 768 . . . . . . . . . . . . . 14 ((((𝜑𝑘𝐴) ∧ (𝐹𝑘) ⊆ 𝐾) ∧ (𝑡 ∈ (𝒫 𝐾 ∩ Fin) ∧ (𝐹𝑘) = 𝑡)) → 𝑋 = 𝑈)
9492, 93sseqtr4d 3783 . . . . . . . . . . . . 13 ((((𝜑𝑘𝐴) ∧ (𝐹𝑘) ⊆ 𝐾) ∧ (𝑡 ∈ (𝒫 𝐾 ∩ Fin) ∧ (𝐹𝑘) = 𝑡)) → ran (𝑥𝑡 ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑥)) ⊆ 𝑋)
9591, 94eqssd 3761 . . . . . . . . . . . 12 ((((𝜑𝑘𝐴) ∧ (𝐹𝑘) ⊆ 𝐾) ∧ (𝑡 ∈ (𝒫 𝐾 ∩ Fin) ∧ (𝐹𝑘) = 𝑡)) → 𝑋 = ran (𝑥𝑡 ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑥)))
96 unieq 4596 . . . . . . . . . . . . . 14 (𝑧 = ran (𝑥𝑡 ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑥)) → 𝑧 = ran (𝑥𝑡 ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑥)))
9796eqeq2d 2770 . . . . . . . . . . . . 13 (𝑧 = ran (𝑥𝑡 ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑥)) → (𝑋 = 𝑧𝑋 = ran (𝑥𝑡 ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑥))))
9897rspcev 3449 . . . . . . . . . . . 12 ((ran (𝑥𝑡 ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑥)) ∈ (𝒫 𝑈 ∩ Fin) ∧ 𝑋 = ran (𝑥𝑡 ↦ ((𝑤𝑋 ↦ (𝑤𝑘)) “ 𝑥))) → ∃𝑧 ∈ (𝒫 𝑈 ∩ Fin)𝑋 = 𝑧)
9956, 95, 98syl2anc 696 . . . . . . . . . . 11 ((((𝜑𝑘𝐴) ∧ (𝐹𝑘) ⊆ 𝐾) ∧ (𝑡 ∈ (𝒫 𝐾 ∩ Fin) ∧ (𝐹𝑘) = 𝑡)) → ∃𝑧 ∈ (𝒫 𝑈 ∩ Fin)𝑋 = 𝑧)
10035, 99rexlimddv 3173 . . . . . . . . . 10 (((𝜑𝑘𝐴) ∧ (𝐹𝑘) ⊆ 𝐾) → ∃𝑧 ∈ (𝒫 𝑈 ∩ Fin)𝑋 = 𝑧)
101100ex 449 . . . . . . . . 9 ((𝜑𝑘𝐴) → ( (𝐹𝑘) ⊆ 𝐾 → ∃𝑧 ∈ (𝒫 𝑈 ∩ Fin)𝑋 = 𝑧))
10222, 101syl5bir 233 . . . . . . . 8 ((𝜑𝑘𝐴) → (( (𝐹𝑘) ∖ 𝐾) = ∅ → ∃𝑧 ∈ (𝒫 𝑈 ∩ Fin)𝑋 = 𝑧))
10321, 102mtod 189 . . . . . . 7 ((𝜑𝑘𝐴) → ¬ ( (𝐹𝑘) ∖ 𝐾) = ∅)
104 neq0 4073 . . . . . . 7 (¬ ( (𝐹𝑘) ∖ 𝐾) = ∅ ↔ ∃𝑦 𝑦 ∈ ( (𝐹𝑘) ∖ 𝐾))
105103, 104sylib 208 . . . . . 6 ((𝜑𝑘𝐴) → ∃𝑦 𝑦 ∈ ( (𝐹𝑘) ∖ 𝐾))
106 rexv 3360 . . . . . 6 (∃𝑦 ∈ V 𝑦 ∈ ( (𝐹𝑘) ∖ 𝐾) ↔ ∃𝑦 𝑦 ∈ ( (𝐹𝑘) ∖ 𝐾))
107105, 106sylibr 224 . . . . 5 ((𝜑𝑘𝐴) → ∃𝑦 ∈ V 𝑦 ∈ ( (𝐹𝑘) ∖ 𝐾))
10820, 107sylan2 492 . . . 4 ((𝜑𝑘 ∈ {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1𝑜}) → ∃𝑦 ∈ V 𝑦 ∈ ( (𝐹𝑘) ∖ 𝐾))
109108ralrimiva 3104 . . 3 (𝜑 → ∀𝑘 ∈ {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1𝑜}∃𝑦 ∈ V 𝑦 ∈ ( (𝐹𝑘) ∖ 𝐾))
110 eleq1 2827 . . . 4 (𝑦 = (𝑔𝑘) → (𝑦 ∈ ( (𝐹𝑘) ∖ 𝐾) ↔ (𝑔𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾)))
111110ac6num 9513 . . 3 (({𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1𝑜} ∈ V ∧ 𝑘 ∈ {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1𝑜} {𝑦 ∈ V ∣ 𝑦 ∈ ( (𝐹𝑘) ∖ 𝐾)} ∈ dom card ∧ ∀𝑘 ∈ {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1𝑜}∃𝑦 ∈ V 𝑦 ∈ ( (𝐹𝑘) ∖ 𝐾)) → ∃𝑔(𝑔:{𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1𝑜}⟶V ∧ ∀𝑘 ∈ {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1𝑜} (𝑔𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾)))
1123, 19, 109, 111syl3anc 1477 . 2 (𝜑 → ∃𝑔(𝑔:{𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1𝑜}⟶V ∧ ∀𝑘 ∈ {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1𝑜} (𝑔𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾)))
1131adantr 472 . . . 4 ((𝜑 ∧ (𝑔:{𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1𝑜}⟶V ∧ ∀𝑘 ∈ {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1𝑜} (𝑔𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾))) → 𝐴𝑉)
114 mptexg 6649 . . . 4 (𝐴𝑉 → (𝑚𝐴 ↦ if( (𝐹𝑚) ≈ 1𝑜, (𝐹𝑚), (𝑔𝑚))) ∈ V)
115113, 114syl 17 . . 3 ((𝜑 ∧ (𝑔:{𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1𝑜}⟶V ∧ ∀𝑘 ∈ {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1𝑜} (𝑔𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾))) → (𝑚𝐴 ↦ if( (𝐹𝑚) ≈ 1𝑜, (𝐹𝑚), (𝑔𝑚))) ∈ V)
116 fvex 6363 . . . . . . . 8 (𝐹𝑚) ∈ V
117116uniex 7119 . . . . . . 7 (𝐹𝑚) ∈ V
118117uniex 7119 . . . . . 6 (𝐹𝑚) ∈ V
119 fvex 6363 . . . . . 6 (𝑔𝑚) ∈ V
120118, 119ifex 4300 . . . . 5 if( (𝐹𝑚) ≈ 1𝑜, (𝐹𝑚), (𝑔𝑚)) ∈ V
121120rgenw 3062 . . . 4 𝑚𝐴 if( (𝐹𝑚) ≈ 1𝑜, (𝐹𝑚), (𝑔𝑚)) ∈ V
122 eqid 2760 . . . . 5 (𝑚𝐴 ↦ if( (𝐹𝑚) ≈ 1𝑜, (𝐹𝑚), (𝑔𝑚))) = (𝑚𝐴 ↦ if( (𝐹𝑚) ≈ 1𝑜, (𝐹𝑚), (𝑔𝑚)))
123122fnmpt 6181 . . . 4 (∀𝑚𝐴 if( (𝐹𝑚) ≈ 1𝑜, (𝐹𝑚), (𝑔𝑚)) ∈ V → (𝑚𝐴 ↦ if( (𝐹𝑚) ≈ 1𝑜, (𝐹𝑚), (𝑔𝑚))) Fn 𝐴)
124121, 123mp1i 13 . . 3 ((𝜑 ∧ (𝑔:{𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1𝑜}⟶V ∧ ∀𝑘 ∈ {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1𝑜} (𝑔𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾))) → (𝑚𝐴 ↦ if( (𝐹𝑚) ≈ 1𝑜, (𝐹𝑚), (𝑔𝑚))) Fn 𝐴)
12559breq1d 4814 . . . . . . 7 (𝑛 = 𝑘 → ( (𝐹𝑛) ≈ 1𝑜 (𝐹𝑘) ≈ 1𝑜))
126125notbid 307 . . . . . 6 (𝑛 = 𝑘 → (¬ (𝐹𝑛) ≈ 1𝑜 ↔ ¬ (𝐹𝑘) ≈ 1𝑜))
127126ralrab 3509 . . . . 5 (∀𝑘 ∈ {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1𝑜} (𝑔𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾) ↔ ∀𝑘𝐴 (𝐹𝑘) ≈ 1𝑜 → (𝑔𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾)))
128 iftrue 4236 . . . . . . . . . . 11 ( (𝐹𝑘) ≈ 1𝑜 → if( (𝐹𝑘) ≈ 1𝑜, (𝐹𝑘), (𝑔𝑘)) = (𝐹𝑘))
129128ad2antll 767 . . . . . . . . . 10 (((𝜑𝑔:{𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1𝑜}⟶V) ∧ (𝑘𝐴 (𝐹𝑘) ≈ 1𝑜)) → if( (𝐹𝑘) ≈ 1𝑜, (𝐹𝑘), (𝑔𝑘)) = (𝐹𝑘))
130105adantrr 755 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑘𝐴 (𝐹𝑘) ≈ 1𝑜)) → ∃𝑦 𝑦 ∈ ( (𝐹𝑘) ∖ 𝐾))
13112adantl 473 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑘𝐴 (𝐹𝑘) ≈ 1𝑜)) ∧ 𝑦 ∈ ( (𝐹𝑘) ∖ 𝐾)) → 𝑦 (𝐹𝑘))
132 simplrr 820 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑘𝐴 (𝐹𝑘) ≈ 1𝑜)) ∧ 𝑦 ∈ ( (𝐹𝑘) ∖ 𝐾)) → (𝐹𝑘) ≈ 1𝑜)
133 en1b 8191 . . . . . . . . . . . . . . . 16 ( (𝐹𝑘) ≈ 1𝑜 (𝐹𝑘) = { (𝐹𝑘)})
134132, 133sylib 208 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑘𝐴 (𝐹𝑘) ≈ 1𝑜)) ∧ 𝑦 ∈ ( (𝐹𝑘) ∖ 𝐾)) → (𝐹𝑘) = { (𝐹𝑘)})
135131, 134eleqtrd 2841 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑘𝐴 (𝐹𝑘) ≈ 1𝑜)) ∧ 𝑦 ∈ ( (𝐹𝑘) ∖ 𝐾)) → 𝑦 ∈ { (𝐹𝑘)})
136 elsni 4338 . . . . . . . . . . . . . 14 (𝑦 ∈ { (𝐹𝑘)} → 𝑦 = (𝐹𝑘))
137135, 136syl 17 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑘𝐴 (𝐹𝑘) ≈ 1𝑜)) ∧ 𝑦 ∈ ( (𝐹𝑘) ∖ 𝐾)) → 𝑦 = (𝐹𝑘))
138 simpr 479 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑘𝐴 (𝐹𝑘) ≈ 1𝑜)) ∧ 𝑦 ∈ ( (𝐹𝑘) ∖ 𝐾)) → 𝑦 ∈ ( (𝐹𝑘) ∖ 𝐾))
139137, 138eqeltrrd 2840 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑘𝐴 (𝐹𝑘) ≈ 1𝑜)) ∧ 𝑦 ∈ ( (𝐹𝑘) ∖ 𝐾)) → (𝐹𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾))
140130, 139exlimddv 2012 . . . . . . . . . . 11 ((𝜑 ∧ (𝑘𝐴 (𝐹𝑘) ≈ 1𝑜)) → (𝐹𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾))
141140adantlr 753 . . . . . . . . . 10 (((𝜑𝑔:{𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1𝑜}⟶V) ∧ (𝑘𝐴 (𝐹𝑘) ≈ 1𝑜)) → (𝐹𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾))
142129, 141eqeltrd 2839 . . . . . . . . 9 (((𝜑𝑔:{𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1𝑜}⟶V) ∧ (𝑘𝐴 (𝐹𝑘) ≈ 1𝑜)) → if( (𝐹𝑘) ≈ 1𝑜, (𝐹𝑘), (𝑔𝑘)) ∈ ( (𝐹𝑘) ∖ 𝐾))
143142a1d 25 . . . . . . . 8 (((𝜑𝑔:{𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1𝑜}⟶V) ∧ (𝑘𝐴 (𝐹𝑘) ≈ 1𝑜)) → ((¬ (𝐹𝑘) ≈ 1𝑜 → (𝑔𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾)) → if( (𝐹𝑘) ≈ 1𝑜, (𝐹𝑘), (𝑔𝑘)) ∈ ( (𝐹𝑘) ∖ 𝐾)))
144143expr 644 . . . . . . 7 (((𝜑𝑔:{𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1𝑜}⟶V) ∧ 𝑘𝐴) → ( (𝐹𝑘) ≈ 1𝑜 → ((¬ (𝐹𝑘) ≈ 1𝑜 → (𝑔𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾)) → if( (𝐹𝑘) ≈ 1𝑜, (𝐹𝑘), (𝑔𝑘)) ∈ ( (𝐹𝑘) ∖ 𝐾))))
145 pm2.27 42 . . . . . . . 8 (𝐹𝑘) ≈ 1𝑜 → ((¬ (𝐹𝑘) ≈ 1𝑜 → (𝑔𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾)) → (𝑔𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾)))
146 iffalse 4239 . . . . . . . . 9 (𝐹𝑘) ≈ 1𝑜 → if( (𝐹𝑘) ≈ 1𝑜, (𝐹𝑘), (𝑔𝑘)) = (𝑔𝑘))
147146eleq1d 2824 . . . . . . . 8 (𝐹𝑘) ≈ 1𝑜 → (if( (𝐹𝑘) ≈ 1𝑜, (𝐹𝑘), (𝑔𝑘)) ∈ ( (𝐹𝑘) ∖ 𝐾) ↔ (𝑔𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾)))
148145, 147sylibrd 249 . . . . . . 7 (𝐹𝑘) ≈ 1𝑜 → ((¬ (𝐹𝑘) ≈ 1𝑜 → (𝑔𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾)) → if( (𝐹𝑘) ≈ 1𝑜, (𝐹𝑘), (𝑔𝑘)) ∈ ( (𝐹𝑘) ∖ 𝐾)))
149144, 148pm2.61d1 171 . . . . . 6 (((𝜑𝑔:{𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1𝑜}⟶V) ∧ 𝑘𝐴) → ((¬ (𝐹𝑘) ≈ 1𝑜 → (𝑔𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾)) → if( (𝐹𝑘) ≈ 1𝑜, (𝐹𝑘), (𝑔𝑘)) ∈ ( (𝐹𝑘) ∖ 𝐾)))
150149ralimdva 3100 . . . . 5 ((𝜑𝑔:{𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1𝑜}⟶V) → (∀𝑘𝐴 (𝐹𝑘) ≈ 1𝑜 → (𝑔𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾)) → ∀𝑘𝐴 if( (𝐹𝑘) ≈ 1𝑜, (𝐹𝑘), (𝑔𝑘)) ∈ ( (𝐹𝑘) ∖ 𝐾)))
151127, 150syl5bi 232 . . . 4 ((𝜑𝑔:{𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1𝑜}⟶V) → (∀𝑘 ∈ {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1𝑜} (𝑔𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾) → ∀𝑘𝐴 if( (𝐹𝑘) ≈ 1𝑜, (𝐹𝑘), (𝑔𝑘)) ∈ ( (𝐹𝑘) ∖ 𝐾)))
152151impr 650 . . 3 ((𝜑 ∧ (𝑔:{𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1𝑜}⟶V ∧ ∀𝑘 ∈ {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1𝑜} (𝑔𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾))) → ∀𝑘𝐴 if( (𝐹𝑘) ≈ 1𝑜, (𝐹𝑘), (𝑔𝑘)) ∈ ( (𝐹𝑘) ∖ 𝐾))
153 fneq1 6140 . . . . . 6 (𝑓 = (𝑚𝐴 ↦ if( (𝐹𝑚) ≈ 1𝑜, (𝐹𝑚), (𝑔𝑚))) → (𝑓 Fn 𝐴 ↔ (𝑚𝐴 ↦ if( (𝐹𝑚) ≈ 1𝑜, (𝐹𝑚), (𝑔𝑚))) Fn 𝐴))
154 fveq1 6352 . . . . . . . . 9 (𝑓 = (𝑚𝐴 ↦ if( (𝐹𝑚) ≈ 1𝑜, (𝐹𝑚), (𝑔𝑚))) → (𝑓𝑘) = ((𝑚𝐴 ↦ if( (𝐹𝑚) ≈ 1𝑜, (𝐹𝑚), (𝑔𝑚)))‘𝑘))
155 fveq2 6353 . . . . . . . . . . . . 13 (𝑚 = 𝑘 → (𝐹𝑚) = (𝐹𝑘))
156155unieqd 4598 . . . . . . . . . . . 12 (𝑚 = 𝑘 (𝐹𝑚) = (𝐹𝑘))
157156breq1d 4814 . . . . . . . . . . 11 (𝑚 = 𝑘 → ( (𝐹𝑚) ≈ 1𝑜 (𝐹𝑘) ≈ 1𝑜))
158156unieqd 4598 . . . . . . . . . . 11 (𝑚 = 𝑘 (𝐹𝑚) = (𝐹𝑘))
159 fveq2 6353 . . . . . . . . . . 11 (𝑚 = 𝑘 → (𝑔𝑚) = (𝑔𝑘))
160157, 158, 159ifbieq12d 4257 . . . . . . . . . 10 (𝑚 = 𝑘 → if( (𝐹𝑚) ≈ 1𝑜, (𝐹𝑚), (𝑔𝑚)) = if( (𝐹𝑘) ≈ 1𝑜, (𝐹𝑘), (𝑔𝑘)))
161 fvex 6363 . . . . . . . . . . . . 13 (𝐹𝑘) ∈ V
162161uniex 7119 . . . . . . . . . . . 12 (𝐹𝑘) ∈ V
163162uniex 7119 . . . . . . . . . . 11 (𝐹𝑘) ∈ V
164 fvex 6363 . . . . . . . . . . 11 (𝑔𝑘) ∈ V
165163, 164ifex 4300 . . . . . . . . . 10 if( (𝐹𝑘) ≈ 1𝑜, (𝐹𝑘), (𝑔𝑘)) ∈ V
166160, 122, 165fvmpt 6445 . . . . . . . . 9 (𝑘𝐴 → ((𝑚𝐴 ↦ if( (𝐹𝑚) ≈ 1𝑜, (𝐹𝑚), (𝑔𝑚)))‘𝑘) = if( (𝐹𝑘) ≈ 1𝑜, (𝐹𝑘), (𝑔𝑘)))
167154, 166sylan9eq 2814 . . . . . . . 8 ((𝑓 = (𝑚𝐴 ↦ if( (𝐹𝑚) ≈ 1𝑜, (𝐹𝑚), (𝑔𝑚))) ∧ 𝑘𝐴) → (𝑓𝑘) = if( (𝐹𝑘) ≈ 1𝑜, (𝐹𝑘), (𝑔𝑘)))
168167eleq1d 2824 . . . . . . 7 ((𝑓 = (𝑚𝐴 ↦ if( (𝐹𝑚) ≈ 1𝑜, (𝐹𝑚), (𝑔𝑚))) ∧ 𝑘𝐴) → ((𝑓𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾) ↔ if( (𝐹𝑘) ≈ 1𝑜, (𝐹𝑘), (𝑔𝑘)) ∈ ( (𝐹𝑘) ∖ 𝐾)))
169168ralbidva 3123 . . . . . 6 (𝑓 = (𝑚𝐴 ↦ if( (𝐹𝑚) ≈ 1𝑜, (𝐹𝑚), (𝑔𝑚))) → (∀𝑘𝐴 (𝑓𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾) ↔ ∀𝑘𝐴 if( (𝐹𝑘) ≈ 1𝑜, (𝐹𝑘), (𝑔𝑘)) ∈ ( (𝐹𝑘) ∖ 𝐾)))
170153, 169anbi12d 749 . . . . 5 (𝑓 = (𝑚𝐴 ↦ if( (𝐹𝑚) ≈ 1𝑜, (𝐹𝑚), (𝑔𝑚))) → ((𝑓 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑓𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾)) ↔ ((𝑚𝐴 ↦ if( (𝐹𝑚) ≈ 1𝑜, (𝐹𝑚), (𝑔𝑚))) Fn 𝐴 ∧ ∀𝑘𝐴 if( (𝐹𝑘) ≈ 1𝑜, (𝐹𝑘), (𝑔𝑘)) ∈ ( (𝐹𝑘) ∖ 𝐾))))
171170spcegv 3434 . . . 4 ((𝑚𝐴 ↦ if( (𝐹𝑚) ≈ 1𝑜, (𝐹𝑚), (𝑔𝑚))) ∈ V → (((𝑚𝐴 ↦ if( (𝐹𝑚) ≈ 1𝑜, (𝐹𝑚), (𝑔𝑚))) Fn 𝐴 ∧ ∀𝑘𝐴 if( (𝐹𝑘) ≈ 1𝑜, (𝐹𝑘), (𝑔𝑘)) ∈ ( (𝐹𝑘) ∖ 𝐾)) → ∃𝑓(𝑓 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑓𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾))))
1721713impib 1109 . . 3 (((𝑚𝐴 ↦ if( (𝐹𝑚) ≈ 1𝑜, (𝐹𝑚), (𝑔𝑚))) ∈ V ∧ (𝑚𝐴 ↦ if( (𝐹𝑚) ≈ 1𝑜, (𝐹𝑚), (𝑔𝑚))) Fn 𝐴 ∧ ∀𝑘𝐴 if( (𝐹𝑘) ≈ 1𝑜, (𝐹𝑘), (𝑔𝑘)) ∈ ( (𝐹𝑘) ∖ 𝐾)) → ∃𝑓(𝑓 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑓𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾)))
173115, 124, 152, 172syl3anc 1477 . 2 ((𝜑 ∧ (𝑔:{𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1𝑜}⟶V ∧ ∀𝑘 ∈ {𝑛𝐴 ∣ ¬ (𝐹𝑛) ≈ 1𝑜} (𝑔𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾))) → ∃𝑓(𝑓 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑓𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾)))
174112, 173exlimddv 2012 1 (𝜑 → ∃𝑓(𝑓 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑓𝑘) ∈ ( (𝐹𝑘) ∖ 𝐾)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 383   = wceq 1632  wex 1853  wcel 2139  {cab 2746  wral 3050  wrex 3051  {crab 3054  Vcvv 3340  cdif 3712  cin 3714  wss 3715  c0 4058  ifcif 4230  𝒫 cpw 4302  {csn 4321   cuni 4588   ciun 4672   class class class wbr 4804  cmpt 4881  ccnv 5265  dom cdm 5266  ran crn 5267  cima 5269   Fn wfn 6044  wf 6045  cfv 6049  cmpt2 6816  1𝑜c1o 7723  Xcixp 8076  cen 8120  Fincfn 8123  cardccrd 8971  Compccmp 21411  UFLcufl 21925
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-se 5226  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-isom 6058  df-riota 6775  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-om 7232  df-1st 7334  df-2nd 7335  df-wrecs 7577  df-recs 7638  df-rdg 7676  df-1o 7730  df-oadd 7734  df-omul 7735  df-er 7913  df-map 8027  df-ixp 8077  df-en 8124  df-dom 8125  df-fin 8127  df-wdom 8631  df-card 8975  df-acn 8978  df-cmp 21412
This theorem is referenced by:  ptcmplem4  22080
  Copyright terms: Public domain W3C validator